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A theory is presented to explain known phenomena associated with lightweight ob-
jects on the surface of a liquid, and to predict other phenomena. Such objects are
supported partly by hydrostatic pressure and partly by surface tension, and this lat-
ter component causes the surface of the liquid to deflect in a manner that decays
rapidly with distance from each object. The forces between such objects, which may
be of attraction or repulsion, stem from the interaction of these surface deflexions
and are here determined by reference to the equal and opposite forces required to
maintain static equilibrium. As an essential preliminary to this, and in the context
of a linear theory, the equilibrium equations are derived for a floating object of ar-
bitrary shape where the deflexions and slopes of the adjoining free surface of the
liquid are also arbitrary but small. These equilibrium equations provide the bound-
ary conditions that determine the deflexion of the free surface of the liquid based on
Laplace’s surface tension equation. The forces of mutual attraction or repulsion are
shown to be given by certain contour integrals involving the squares of the surface
deflexion and slopes surrounding each object.

One-dimensional cases of infinite strips supported on an infinite expanse of liquid
are considered in detail because, first, they admit of exact, nonlinear solutions so
that the range of validity of the linear theory may be estimated and, second, they
demonstrate in a simple manner many of the phenomena associated with objects
supported by surface tension, including: mutual attraction leading to coalesence,
characteristic deflexion patterns in rafts dependent on the individual strip width,
localized mutual repulsion between objects of different weights, and extensive mutual
repulsion between an object and a boundary. It is also shown that a phenomenon of
mutual alignment occurs with certain strips with pie-crust edge undulations.

An analysis is given of the toppling instability of an upright circular cylinder, and
its equilibrium state if its centre of gravity is radially offset; we also outline an inverse
method of analysis for determining the forces of mutual attraction between discs of
arbitrary shape, and the method is demonstrated for two touching oval discs. Finally,
attention is given to the forces of mutual attraction within and between coalescences
of numerous objects whose individual linear dimensions are small in comparison with
the capillary length.

Various results are supported by experiment.

1. Introduction

The phenomenon of surface tension manifests itself in many ways; these include
capillary action in liquids that rise in a narrow tube, the behaviour of mercury on a
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Mutual attraction or repulsion of objects supported by surface tension 871

horizontal surface, and the formation of raindrops and soap bubbles. It is also respon-
sible in an indirect manner for the commonly observed, but hitherto unexplained,
phenomenon that small lightweight objects in close proximity on the surface of a
liquid will generally coalesce.

The theory of capillary action based on surface tension was founded by Young
(1805) but because of his scrupulous avoidance of mathematics his results are better
understood by reference to the work of Laplace (1806). The aspect of surface tension
that these authors deduced, and which is of prime concern to us, is that at the free
surface of a liquid that is in static equilibrium the hydrostatic pressure is balanced
by the product of the surface tension and the total curvature of the free surface.
In general, the analysis for determining such surfaces presents formidable difficulties
while, even when there is rotational symmetry, Lord Kelvin (1891) wrote: ‘A general
solution of this problem by the methods of the differential and integral calculus
transcends the powers of mathematical analysis’. Nowadays, however, we can readily
obtain numerical solutions for such problems as the shape of a drop of liquid resting
on a flat surface (Brown et al. 1980) or the effects of capillary action in a cylindrical
container (Adamson 1990). There is another class of problem where numerical or
analytical solutions are readily obtainable because the governing equations are linear;
these occur if the slope of the free surface relative to a horizontal x, y plane is known
to be small, for then its curvatures are adequately given by the second derivatives
with respect to x, y of its vertical displacement. This procedure yields Laplace’s
equation which is associated with a characteristic length L that depends on the
magnitude of the surface tension and the weight density of the liquid, for example
L ≈ 2.7 mm for water. Laplace’s equation forms an essential ingredient in the present
theory and it follows that solutions for objects of a given size on the surface of a given
liquid are not applicable at a different scale. Furthermore, because of the rapid decay
of surface deflexion with distance from an object, the importance of surface tension
effects is generally limited to objects separated by a distance less than about 10L.
As for the forces of mutual attraction or repulsion between objects, we derive these
by equating them with the equal and opposite forces required for static equilibrium.
Thus, dynamic effects are not considered and the theory is strictly applicable only to
objects that have coalesced or, as may occur, have reached an equilibrium position
where they remain separated. However, the theory will necessarily form part of any
dynamic analysis, in addition to providing initial ‘at rest’ conditions. The forces of
mutual attraction or repulsion applied to each object are expressed in terms of certain
contour integrals of the squares of the surface deflexion and slopes surrounding each
object. However, to enable us to estimate the range of validity of the linear theory,
we first derive exact (nonlinear) solutions for the one-dimensional problems of a
single and two touching infinitely long, shallow, rigid strips of rectangular section
supported on the surface of an infinite expanse of liquid. For the single strip we also
discuss the basic role played by the physical characteristics of the object, liquid and
gas, and we determine the critical weight at which the strip sinks. We also show how
linear theory can give a safe estimate of the critical weight at which any object will
sink, despite the fact that this is an essentially nonlinear phenomenon.

2. Range of validity of linear theory

Before deriving the general equilibrium equations for an arbitrary object based on
linear theory, we investigate its range of validity by comparisons with exact (nonlin-
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Figure 1. Cross-section of shallow strip with arbitrary edge displacements z∗ and slopes φ of
the liquid surface.

ear) solutions for the mathematically one-dimensional problems of a single infinitely
long strip of shallow rectangular cross-section and of two identical but touching strips
supported on the surface of an infinite expanse of liquid. We also discuss the role
played by the physical characteristics of the object, liquid and gas. First, we rehearse
the exact (nonlinear) equation for the static deflexion of a liquid and its specialization
to the one-dimensional case. We then derive the boundary conditions for a strip and
an expression for the horizontal force required for its equilibrium. The corresponding
results for linear theory are derived by a limiting process.

The equation governing the surface deflexion z of a liquid with surface tension S
per unit length is given by

S(κ1 + κ2)− γgz = 0, (2.1)

where

κ1, κ2 = principal curvatures of surface,

γ = density of liquid,

g = gravitational acceleration.

For the one-dimensional case of a strip of liquid aligned to the y-axis, say, equation
(2.1) is therefore given by

S
d2z

dx2

{
1 +

(
dz
dx

)2}−3/2

− γgz = 0. (2.2)

(a ) General equilibrium conditions for shallow strip
The equilibrium conditions for a shallow strip of rectangular cross-section are now

expressed in terms of arbitrary slopes φ1, φ2 and deflexions z∗1 , z∗2 of the free surface
of the liquid at its junction with the strip, as shown in figure 1.

The strip is supported by surface tension and hydrostatic pressure, and hence
vertical equilibrium yields

S(sinφ1 + sinφ2) + γgb(z∗1 + z∗2) cosα = W, (2.3)

where W is the weight of the strip per unit length, 2b is the width of the strip and
α is the angle of tilt of the strip cross-section, so that

sinα =
(
z∗1 − z∗2

2b

)
. (2.4)
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Mutual attraction or repulsion of objects supported by surface tension 873

Likewise, horizontal equilibrium yields

H12 = S(cosφ1 − cosφ2) + γgb(z∗1 + z∗2) sinα, (2.5)

where the suffices for H indicate the direction of the horizontal force required for
equilibrium.

In discussing moment equilibrium it is convenient to regard the horizontal force
as having two components, namely 1

2(1 +ψ)H12 at edge1 and 1
2(1−ψ)H12 at edge2,

because this facilitates the treatment of cases in which strips have coalesced when,
for example, ψ = ±1 for the outermost strips. Moments about the centre-line of the
lower surface of the strip now yields

bS{sin(φ1 + α)− sin(φ2 − α)} − bψH12 sinα−
∫ b

−b
γgzX dX = 0, (2.6)

where X is measured across the width of the deflected strip. Now the deflexion z
varies linearly from z∗1 to z∗2 and hence the integral in equation (2.6) is given by

−
∫ b

−b
γgzX dX = 1

3γgb
2(z∗1 − z∗2). (2.7)

(b ) Non-dimensionalization of lengths
The above equations can be expressed more simply by the introduction of the fol-

lowing non-dimensional measures of the planar coordinates x, y, the surface deflexion
z, the outward normal n (measured in a horizontal plane) from the edge of a strip,
the half width b of a strip and, to be introduced later, the distance between adjacent
strips l:

{ξ, η, ζ, ν, β, λ} = {x, y, z, n, b, l}/L, (2.8)
where

L = (S/γg)1/2, (2.9)
which is sometimes referred to as the capillary length or the surface tension length.
Thus, in non-dimensional form, the exact differential equation for the surface of the
liquid in the one-dimensional case is given by

d2ζ

dξ2

{
1 +

(
dζ
dξ

)2}−3/2

− ζ = 0, (2.10)

while the equation of vertical equilibrium is given by

sinφ1 + sinφ2 + β(ζ∗1 + ζ∗2 ) cosα = W/S, (2.11)

where

sinα =
(
ζ∗1 − ζ∗2

2β

)
. (2.12)

The equation of horizontal equilibrium is given by

H12/S = cosφ1 − cosφ2 + 1
2(ζ∗1

2 − ζ∗2 2), (2.13)

and, after substitution of the above expression into equation (2.6), the equation of
moment equilibrium is given by

sinα{(1− ψ) cosφ1 + (1 + ψ) cosφ2}+ cosα(sinφ1 − sinφ2)

+β{ 1
3(ζ∗1 − ζ∗2 )− ψ sin2 α(ζ∗1 + ζ∗2 )} = 0. (2.14)
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Note that because we are concerned here only with static equilibrium, the horizontal
force H12 cannot be initially specified as it is a function of the edge slopes φ and
displacements ζ∗ which are determined by the boundary conditions of equations
(2.11) and (2.14).

(c ) Linear theory
Linear theory is based on the assumption that the squares of the slopes of the

surface of the liquid and the angle of tilt of the object, may be neglected in comparison
with unity. With this simplification equation (2.1) becomes

∇2ζ − ζ = 0, (2.15)

while for the problem with strips aligned to the η axis,

d2ζ

dξ2 − ζ = 0. (2.16)

Likewise, the boundary conditions of equations (2.11) and (2.14) reduce to

φ1 + φ2 + β(ζ∗1 + ζ∗2 ) = W/S,

β(φ1 − φ2) + (1 + 1
3β

2)(ζ∗1 − ζ∗2 ) = 0,

}
(2.17)

and the horizontal force required for equilibrium is given by

H12/S = 1
2(φ2

2 − φ2
1 + ζ∗

2

1 − ζ∗
2

2 ), (2.18)

where

φ = −
(
∂ζ

∂ν

)
ν=0

. (2.19)

Note that in the equation of moment equilibrium the term ψ no longer appears.
This is because the horizontal force varies as terms of order φ2 and αζ∗, and its
contribution to moment equilibrium varies as terms of order αφ2 and α2ζ∗ which are
negligible in comparison with other terms.

(d ) Equilibrium of single strip
For the exact theory, the reader may care to note that equation (2.10) is the same

as that for the elastica which was comprehensively treated by Kelvin & Tait (1895).
Thus, multiplication by 2dζ and integration gives

ζ2 = C − 2
{

1 +
(

dζ
dξ

)2}−1/2

, (2.20)

where C is a constant. Now as ξ → ∞, ζ → 0 so that C = 2 and it follows that
equation (2.20) can be expressed in the form

dζ
dξ

= −ζ(4− ζ2)1/2

2− ζ2 . (2.21)

Because of symmetry the boundary conditions at each edge are the same, where we
therefore have

tanφ =
ζ∗(4− ζ∗2)1/2

2− ζ∗2 , (2.22)
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so that, in particular,

sinφ = ζ∗(1− 1
4ζ
∗2)1/2, cosφ = 1− 1

2ζ
∗2 . (2.23)

It follows from the boundary condition of vertical equilibrium, equation (2.11), that
the deflexion of the strip is determined by

ζ∗ =
W

2S

(
1

β + (1− 1
4ζ
∗2)1/2

)
. (2.24)

The strip deflexion thus varies nonlinearly with W , in contrast to linear theory which
yields

ζ∗ =
W

2S

(
1

1 + β

)
, φ = ζ∗. (2.25)

A compact comparison of the deflexions according to the exact and linear theories
is shown in figure 2 where, for various values of β, ζ∗exact/ζ

∗
linear is plotted against

W/(1 + β)S. Also shown are curves along which the edge slope φ = 45, 60 and 90◦.
Note that when φ = 90◦ the strip remains stable because a small increase in W is
equilibrated by an increase in hydrostatic pressure, i.e.(

∂W

∂z∗

)
φ= 1

2π

= 2bγg. (2.26)

For a given width of strip the maximum possible load that can be supported occurs
when ∂W/∂z∗ = 0, whence from equation (2.24),

Wmax = 1
2S{4 + 10β2 − 1

2β
4 + 1

2β(8 + β2)3/2}1/2, (2.27)

which occurs when

ζ∗ = {2− 1
2β

2 + β(2 + 1
4β

2)1/2}1/2, φ = 1
2π + arcsin

(
2β

β + (8 + β2)1/2

)
. (2.28)

Of course, such extreme situations have little practical relevance but are presented
for completeness; furthermore, because φ > 90◦ it would be necessary with a strip
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Figure 3. Cross-section of edge of strip with rounded corners. Points a, b, c, d indicate contact
with surface of liquid for increasing weights of strip. Arrows indicate direction of surface tension.

of rectangular section for the free surface of the liquid to coincide with the upper
edges of the strip so that the above value of Wmax would be increased by buoyancy
effects, as discussed below where attention is drawn to certain restrictions on the
range of validity of equation (2.27). Figure 2 shows, however, that linear theory gives
excellent agreement if φ < 45◦, while even if φ = 60◦ the maximum error is generally
less than 10%, despite the basic assumption that φ is small.

(e ) Influence of physical characteristics of object, liquid and gas
The analysis of §2 a is based on the assumption that the free surface of the liquid is

in contact with a strip only at its lower edges. This assumption is valid for sufficiently
small values of φ, but here we determine its precise range of validity and what
happens when this range is exceeded. In this connection it is convenient to introduce
Φ, say, the angle in a vertical plane between a normal to the surface of the object
and the free surface of the liquid. The angle Φ depends on physical characteristics
of the object, liquid and gas, and is governed by Young’s equation, namely

S sin Φ = Ssl − Ssg, (2.29)

where Ssl, Ssg are, respectively, the interfacial tensions between the solid and liquid,
and the solid and gas. In contrast, the angle φ between the horizontal and the free
surface of the liquid depends primarily on considerations of equilibrium and in what
follows we determine the influence of Φ on φ for the single uniform strip of rectangular
section.

Figure 3 depicts cross-sections of differently weighted strips of rectangular section
with, for demonstration purposes, rounded corners. The arrowed lines are tangents to
the surface of the liquid. For rectangular sections with no rounded corners the points
a, b coalesce, as do the points c, d. Furthermore, it is apparent that when φ < Φ the
free surface of the liquid coincides with the lower edges of the strip, while if φ > Φ
it coincides with the upper edges of the strip. Finally, if φ = Φ the surface of the
liquid meets the sides at some intermediate point, see below, where the three cases
are analysed by the linear theory.

(i) Liquid surface coinciding with lower edges of strip, φ < Φ
This case was treated in §2 d and it only remains to identify the weight limit of

the strip or, what is more convenient, the upper limit of the density γs of a strip of
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given cross-section 2b × 2h. It follows from equations (2.25) that the surface of the
liquid coincides with the lower edges of the strip if

γs 6 ΨΦ, (2.30)

where

Ψ =
S(1 + β)

2bhg
.

(ii) Liquid surface coinciding with upper edges of strip, φ > Φ
This case is effectively identical to that considered above except that, from con-

siderations of buoyancy, the strip has an effective density of (γs − γ). It follows that
the lower limit for the density is given by:

γs > ΨΦ + γ. (2.31)

(iii) Liquid surface meeting side of strip, φ = Φ
Suppose that the free surface of the liquid meets the sides of the strip at a height

2∆h above the lower edges, so that 0 < ∆ < 1. The effective density of the strip is
now (γs −∆γ) and it follows that

γs = ΨΦ + ∆γ, (2.32)

so that ∆ varies linearly from 0 to 1 as γs varies between the limiting values of ΨΦ
and (ΨΦ + γ).

(iv) Influence of Φ on theoretical maximum load
The analysis leading up to equation (2.27) does not include any restriction imposed

by the physical characteristics of the object, liquid and gas. Thus from equation (2.28)
it follows that equation (2.27) is valid if

Φ 6 arcsin
(

2β
β + (8 + β2)1/2

)
, (2.33)

which can be expressed as

β 6 sin Φ
(

2
1− sin Φ

)1/2

. (2.34)

When this inequality is not satisfied the maximum load occurs when φ = 1
2π + Φ,

whence from equations (2.23), (2.24) and (2.31),

Wmax = 2S[cos Φ + β{2(1 + sin Φ)}1/2] + 4bhγg. (2.35)

The single uniform strip is, needless to say, the simplest case amenable to such
analysis. For example, further, albeit minor, complexities arise if the liquid surface
meets the side of a tilted strip. For more general objects it may be necessary to
analyse by numerical trial-and-error techniques.

(v) Discussion
Linear theory cannot predict the critical weight at which a strip or, indeed, any

object will sink because this is an essentially nonlinear phenomenon. However, it
follows from the previous exact solutions that a strip will be slightly below that
critical weight when φ = 1

2π, particularly if Φ is small. Indeed, referring to equation
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(2.3) we see that the component of support provided by surface tension is 2S sinφ
whose maximum value occurs when φ = 1

2π. In linear theory whose validity, strictly
speaking, requires that φ is small, the corresponding component of support is ap-
proximated as 2Sφ, so that to avoid exceeding the true maximum value we see that
φ should not exceed 1. At this limiting value of φ the component of support provided
by surface tension agrees with the true maximum value, but the component provided
by hydrostatic pressure is underestimated because linear theory then predicts that
ζ∗ = 1, whereas the exact value is

√
2. For strips that are supported primarily by

surface tension this discrepancy is less significant; it also means, however, that a
strip whose weight is such that linear theory predicts a unit value of φ will be some-
what below that required for it to sink. Similar arguments apply to the behaviour of
circular discs, and these can doubtless be extended to more general objects. Thus,
although linear theory cannot predict the precise conditions at which an object will
sink, it can predict a weight that is known to be not too far below the critical value.
Of course, in any biological application concerning, for example, the equilibrium or
motion of surface-living insects or their eggs, natural selection would have ensured
that they remain afloat under moderate conditions of surface disturbance, and hence
the requirements of linear theory are likely to be met.

(f ) Equilibrium of two identical, shallow, touching strips
The deflexions of the strips are symmetrical about their line of contact and hence

we can focus attention on the right-hand strip, say, where φ1 = 0 and ψ = 1. Equation
(2.11) of vertical equilibrium is thus given by

sinφ2 + β(ζ∗1 + ζ∗2 ) cosα = W/S, (2.36)

and equation (2.14) of moment equilibrium reduces to

2 sinα cosφ2 − cosα sinφ2 + β{ 1
3(ζ∗1 − ζ∗2 )− (ζ∗1 + ζ∗2 ) sin2 α} = 0. (2.37)

Further, from arguments identical to those in §2 d, we have

sinφ2 = ζ∗2 (1− 1
4ζ
∗2
2 )1/2, cosφ2 = 1− 1

2ζ
∗2
2 . (2.38)

Equations (2.12) and (2.36)–(2.38) enable us to determine ζ∗1 , ζ
∗
2 for given values of

β and W/S. The horizontal force H between the two strips is now given by equation
(2.13), whence

H = 1
2Sζ

∗2
1 , (2.39)

and if this is expressed in dimensional form, namely

H = 1
2z
∗2
1 γg, (2.40)

it identifies H as the resultant of the horizontal component of hydrostatic pressures
acting over the range 0 < z < z∗1 in regions remote from the strips.

For the linear theory, equations (2.38) yield

φ2 = ζ∗2 , (2.41)

and equations (2.17) may be solved to yield

ζ∗1 =
W

S

(
3 + 3β + β2

3 + 6β + 4β2 + 2β3

)
, ζ∗2 =

W

S

(
3 + β2

3 + 6β + 4β2 + 2β3

)
. (2.42)

The variation of H with β is now given by equation (2.18), but it is best expressed
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Figure 5. Variation of force of mutual attraction H with surface tension S for touching,
shallow strips of given width.

in terms of w, the weight per unit area, so that W = 2bw. Thus we find

H =
2w2

γg

(
β(3 + 3β + β2)

3 + 6β + 4β2 + 2β3

)2

, (2.43)

which is shown in figure 4.
The corresponding variation of H with surface tension S for strips of given width

must take account of the fact that β varies with S because of the variation of L with
S. Thus if we introduce

q = β−2 =
S

b2γg
, (2.44)

we can express equation (2.43) in the form

H =
2w2

γg

(
1 + 3q1/2 + 3q

2 + 4q1/2 + 6q + 3q3/2

)2

, (2.45)

which is shown in figure 5. It is seen that H increases with S when S < 0.0935b2γg;
elsewhere an increase in S results in a decrease in H. Indeed, as b → 0, so that the
proportion of support from hydrostatic pressure is negligible, H varies inversely as
S.

The variation of Hexact/Hlinear with W/(1 + β)S is shown in figure 6 for various
values of β. Also shown are curves along which φ2 = 25, 30 and 35◦. It is seen that
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Figure 6. Variation of Hexact/Hlinear with W/(1 + β)S.

remote surface of liquid

local surface of liquid

σ

σ*

ζ

η

ξ

C*

Figure 7. Notation for arbitrary object showing coordinate system and closed curves C, C∗.

if the errors given by the linear theory are not to exceed about 10%, the angle φ2
should not exceed about 25◦.

3. Equilibrium conditions for object of arbitrary shape

The object of arbitrary shape is depicted in figure 7. The surface of the liquid
meets the object around a closed curve C∗ where at a given point σ∗ the deflexion
is denoted by ζ∗ and the slope of the surface relative to a horizontal normal to C∗ is
denoted by φ. The axes Oξ, Oη are in the horizontal plane asymptotic to the remote
surface of the liquid.

We have already introduced non-dimensional measures of lengths by expressing
them in units of L, and it is now convenient to introduce the following:

weights per unit volume in units of γg,

pressures in units of Lγg,

loads per unit length in units of S or L2γg,
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forces in units of SL or L3γg,

moments in units of SL2 or L4γg.

Note, for example, that because γg is defined as the unit value of weight per unit
volume, the non-dimensional value of the weight of a given volume of liquid is equal to
the non-dimensional value of its volume. The alternative units are identical because
of the definition of L, but each has greater relevance when purely surface tension or
hydrostatic pressure is involved.

The object is supported by surface tension around C∗ and by hydrostatic pressure
below C∗, so that in a formal sense we can write

R(object) = Rst(object) +Rhp(object), (3.1)

where R denotes ‘resultant load applied to’ and suffices indicate by which mode
of support. We consider first the resultant forces and moments caused by surface
tension.

(a ) Resultants of surface tension forces acting on object
Here we are concerned with certain contour integrals around C∗, a curve in three

dimensions with coordinates (ξ∗, η∗, ζ∗). However, these can be reduced to contour
integrals around a curve in purely (ξ∗, η∗) coordinates. We denote by C, σ the vertical
projection of C∗, σ∗ onto the horizontal plane where ζ = 0, so that

(dσ∗)2 = (dσ)2 + (dζ∗)2. (3.2)

It follows that

dσ∗

dσ
= 1 + 1

2

(
dζ∗

dσ

)2

+O
{(

dζ∗

dσ

)4}
, (3.3)

and we note that within the framework of linear theory,(
dζ∗

dσ

)2

� 1. (3.4)

Equation (3.3) is required only in the determination of the resultant horizontal forces
due to surface tension; elsewhere, it is appropriate in linear theory to combine equa-
tions (3.3), (3.4) to yield the simpler result that

dσ∗

dσ
= 1. (3.5)

(i) Resultant vertical force due to surface tension
The surface tension acting over a length δσ∗ of the curve C∗ has a vertical com-

ponent φδσ∗ and hence the resultant vertical force due to surface tension is given
by ∮

φ dσ∗ ≈
∮
φ dσ, (3.6)

where the integrals are taken around C∗ and C, respectively.
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(ii) Resultant moments due to surface tension
In like manner, the vertical component φδσ∗ of the surface tension causes resultant

clockwise moments about the axes Oξ, Oη equal to∮
η∗φ dσ and −

∮
ξ∗φ dσ. (3.7)

Now for small values of φ, cosφ ≈ 1 and hence the horizontal component directed
along ν is δσ∗. This can be resolved into components δσ∗ cos Θ and δσ∗ sin Θ in
the ξ and η directions, where Θ is the angle between ν and Oξ. These components
therefore result in the following moments about the axes Oξ, Oη:∮

ζ∗ sin Θ dσ and −
∮
ζ∗ cos Θ dσ. (3.8)

(iii) Resultant horizontal forces due to surface tension
In determining the resultant horizontal forces due to surface tension we note that

constant, horizontal, planar loads per unit length directed normal to the boundary of
an arbitrarily shaped object have no resultant horizontal force nor, indeed, a resultant
torque about the axis Oζ. Such forces therefore arise only from loads per unit length
that deviate from a constant value; in other words, the horizontal component per unit
length due to surface tension must be given its exact value, namely cosφ, although in
linear theory this is treated as (1− 1

2φ
2). Thus we have seen that for an infinite strip

the horizontal force due to surface tension is of order φ2, but this simple example
is characterised by the constancy of φ and, more importantly, the vanishing of the
slope dζ∗/dσ∗ along the (infinite) boundaries. When dζ∗/dσ∗ 6= 0, account must be
taken of this feature because it corresponds to a rotation of the local surface about
the horizontal vector ν. If φ = 0, the direction of the surface tension normal to δσ∗
would be along ν, but if φ 6= 0, this direction is inclined at an angle φdζ∗/dσ to the
vector ν. It follows that the resultant force in the ξ direction due to surface tension
is given by ∮

cosφ cos
(

Θ + φ
dζ∗

dσ

)
dσ∗

= −
∮ [

1
2

{
φ2 −

(
dζ∗

dσ

)2}
cos Θ + φ

dζ∗

dσ
sin Θ

]
dσ, (3.9)

within the context of linear theory. Likewise, the resultant force in the η direction is
given by ∮

cosφ sin
(

Θ + φ
dζ∗

dσ

)
dσ∗

= −
∮ [

1
2

{
φ2 −

(
dζ∗

dσ

)2}
sin Θ − φdζ∗

dσ
cos Θ

]
dσ. (3.10)

These forces are regarded as acting along the axes Oξ, Oη so that they do not
contribute to a torque about the axis Oζ.

(iv) Resultant torque due to surface tension
The resultant torque about the axis Oζ stems from the horizontal components

δσ∗ cosφ that are inclined at an angle φ dζ∗/dσ to the vector ν, as discussed above.
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The length of the perpendicular from Oζ to the line of action of this elemental load
is

ρ∗ sin
(
θ −Θ − φdζ∗

dσ

)
, (3.11)

where ρ∗, θ are the polar coordinates of a point on C. It follows that the resultant
clockwise torque due to surface tension is given by∮

ρ∗ sin
(
θ −Θ − φdζ∗

dσ

)
cosφ dσ∗

= −
∮
ρ∗
[

1
2

{
φ2 −

(
dζ∗

dσ

)2}
sin(θ −Θ) + φ

dζ∗

dσ
cos(θ −Θ)

]
dσ, (3.12)

within the framework of linear theory.

(b ) Resultants of hydrostatic pressure acting on object
To determine the resultants of the hydrostatic pressure it is convenient first to

consider the equilibrium of a related volume of liquid. Let V (in units of L3) be the
volume whose boundaries comprise the horizontal plane bounded by C, the vertical
cylindrical region between C and C∗, and the wetted part of the object below C∗.
Consider now the hydrostatic pressure applied to an identically shaped volume V of
liquid in regions remote from any surface irregularity. This volume V is necessarily in
equilibrium with the surrounding liquid, and the resultant of the hydrostatic pressure
applied to it is solely a vertical force V (in units of L3γg) directed through the centre
of gravity of the volume V. Now the hydrostatic pressures applied to the object are
confined to regions below C∗, where they are identical to those applied to the liquid
volume V. Of course, the liquid volume V also has hydrostatic pressures applied to
the cylindrical region between C and C∗ so that, in the formal notation of equation
(3.1), we can write

Rhp(volume V) = Rhp(object) +Rhp(cylinder CC∗). (3.13)

Equation (3.13) enables us to express Rhp(object) in terms of Rhp(volume V), which
is known, and the values of Rhp(cylinder CC∗) which we now determine.

(i) Resultant vertical force on object due to hydrostatic pressure
The hydrostatic pressures applied to the cylinder CC∗ are directed normal to the

cylindrical surface and accordingly have zero vertical resultant. Thus we have the
simple result that the resultant vertical force on the object due to hydrostatic pres-
sure is equal to V.

(ii) Resultant horizontal forces on object due to hydrostatic pressure
Because the liquid volume V is in equilibrium under its own gravitational weight,

the hydrostatic pressures applied to it have no resultant horizontal force. Hence,
from equation (3.13), the resultant horizontal forces on the object due to hydrostatic
pressure are of the same magnitude but opposite sign to those applied to the cylinder
CC∗ where, along any vertical strip bounded by generators at σ and σ + δσ, the
resultant of the hydrostatic pressure acting in the direction of −ν, is given by

δσ

∫ ζ∗

0
ζ dζ. (3.14)
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It follows that the resultants of the hydrostatic pressures acting on the object in the
ξ and η directions are, respectively,

1
2

∮
ζ∗

2
cos Θ dσ and 1

2

∮
ζ∗

2
sin Θ dσ. (3.15)

These forces are regarded as acting along the axes Oξ, Oη so that they do not
contribute to a torque about the axis Oζ.

(iii) Resultant moments on object due to hydrostatic pressure
As noted previously, the liquid volume V is in equilibrium with a vertical force V

that passes through the centre of gravity of V with coordinates (ξcg,V , ηcg,V , ζcg,V),
say. It follows that there are clockwise moments about the axes Oξ, Oη applied by
hydrostatic pressure to the liquid volume equal to

Vηcg,V and − Vξcg,V . (3.16)

However, from equation (3.1) we should also consider the moments due to hydrostatic
pressure acting over the cylinder CC∗. From arguments similar to those in the previous
section, these moments are respectively

− 1
3

∮
ζ∗

3
sin Θ dσ and 1

3

∮
ζ∗

3
cos Θ dσ, (3.17)

but comparisons with the corresponding moments due to surface tension, see ex-
pressions (3.7) and (3.8), show that the terms in (3.17) can be ignored in linear
theory.

(iv) Resultant torque applied to object by hydrostatic pressure
From arguments similar to those used in determining the horizontal forces, the

resultant torque applied to the object by hydrostatic pressure is of equal magnitude
but opposite sign to that applied to the cylinder CC∗, where the hydrostatic pressure
acting over a vertical strip of width δσ yields a force 1

2ζ
∗2δσ directed along −ν. Now

the length of the perpendicular from Oζ to the line of action of this elemental load
is ρ∗ sin(θ − Θ), and hence the clockwise torque about Oζ applied to the object by
hydrostatic pressure is

1
2

∮
ρ∗ζ∗

2
sin(θ −Θ) dσ. (3.18)

(c ) Equilibrium equations for object
It was shown in §2 that the boundary conditions for the adjacent liquid are pro-

vided by the equations of vertical equilibrium of the strip, and moment equilibrium
about the horizontal axis Oη. The force of mutual attraction was then determined
by the derived equilibrium configuration. A similar situation occurs for an object of
arbitrary shape where the boundary conditions for the surrounding liquid are pro-
vided by the equations of vertical equilibrium of the object and moment equilibrium
about the axes Oξ, Oη. The horizontal forces and the torque about the axis Oζ are
determined by the derived equilibrium configuration. Now from equation (3.1) and
§3 a, b we can write down the resultant forces and moments applied to the object by
surface tension and hydrostatic pressure, and we can equilibrate these against the
gravitational forces on the object. Hence the equation of vertical equilibrium is given
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by ∮
φ dσ + V =W, (3.19)

where W is the weight of the object expressed in units of L3γg.
Likewise, if the (ξ, η) coordinates of the centre of gravity of the object in its

equilibrium state are (ξcg,W , ηcg,W), the equations of moment equilibrium are given
by ∮

(η∗φ+ ζ∗ sin Θ) dσ + Vηcg,V =Wηcg,W , (3.20)

and ∮
(ξ∗φ+ ζ∗ cos Θ) dσ + Vξcg,V =Wξcg,W . (3.21)

Note that for reasons similar to those discussed in §2 c, the above equations do
not include any contribution stemming from the forces of mutual attraction. In Ap-
pendix A it is shown that the equation of vertical equilibrium, (3.19) is consistent
with the principle of Archimedes ca. 250 BC (see Heath 1897).

(i) Forces of mutual attraction
Equations (3.19)–(3.21) provide the boundary conditions for the surrounding liquid

to enable C and the values of ζ∗ and φ on C∗ to be determined. The horizontal forces
in the ξ and η directions, namely Hξ and Hη, that are required to maintain the static
equilibrium of the object are now given by equations (3.9), (3.10) and (3.15):

Hξ =
∮ [

1
2

{
φ2 − ζ∗2 −

(
dζ∗

dσ

)2}
cos Θ + φ

dζ∗

dσ
sin Θ

]
dσ, (3.22)

and

Hη =
∮ [

1
2

{
φ2 − ζ∗2 −

(
dζ∗

dσ

)2}
sin Θ − φdζ∗

dσ
cos Θ

]
dσ. (3.23)

These forces are regarded as acting along the axes Oξ and Oη; the actual line of action
of their resultant (H2

ξ+H2
η)

1/2 in the ξ, η plane is determined by the clockwise torque
Tζ about the axis Oζ required for equilibrium where, from (3.12) and (3.18),

Tζ =
∮
ρ∗
[

1
2

{
φ2 − ζ∗2 −

(
dζ∗

dσ

)2}
sin(θ −Θ) + φ

dζ∗

dσ
cos(θ −Θ)

]
dσ. (3.24)

(ii) Complex variable representation
The forces Hξ, Hη may be expressed compactly in the form,

Hξ + iHη = 1
2

∮ {(
φ− i

dζ∗

dσ

)2

− ζ∗2
}

eiΘ dσ. (3.25)

(d ) Transfer of non-uniform, horizontal forces through the liquid
Consider the (non-dimensional) tensile and shear forces per unit length, Nξ, Nη,

Nξη acting in a horizontal plane on an element of liquid surface plus underlying
liquid bounded by δξ, δη and a plane where ζ = ζD, say, which is below any surface
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deflexion. The component of Nξ, say, due to hydrostatic pressure is given by

−
∫ ζD

ζ

ζ dζ = 1
2(ζ2 − ζ2

D), (3.26)

and that due to surface tension is{
1 + 1

2

(
∂ζ

∂η

)2}{
1− 1

2

(
∂ζ

∂ξ

)2}
, (3.27)

where the first term stems from the increased length caused by the slope ∂ζ/∂η and
the second term is the ‘cosine’ factor associated with the slope ∂ζ/∂ξ. Combining
these two components within the context of linear theory gives

Nξ = 1
2

{
ζ2 +

(
∂ζ

∂η

)2

−
(
∂ζ

∂ξ

)2}
, (3.28)

where we have omitted the term (1 − 1
2ζ

2
D) because it is a component of a self-

equilibrating, constant, all-round tension. Likewise we have

Nη = 1
2

{
ζ2 +

(
∂ζ

∂ξ

)2

−
(
∂ζ

∂η

)2}
. (3.29)

Hydrostatic pressure does not contribute to the shearing force which stems solely
from a surface tension resultant dependent on the surface slopes:

Nξη = −∂ζ
∂ξ

∂ζ

∂η
. (3.30)

For equilibrium we require

∂Nξ
∂ξ

+
∂Nξη
∂η

= 0,
∂Nη
∂η

+
∂Nξη
∂ξ

= 0, (3.31)

whence, from equations (3.28)–(3.30),

∂ζ

∂ξ
(ζ −∇2ζ) = 0,

∂ζ

∂η
(ζ −∇2ζ) = 0. (3.32)

The above equations are therefore satisfied because the surface deflexion satisfies
equation (2.15) which was derived from vertical equilibrium. In fact, one could argue
that Laplace’s surface tension equation could equally well have been deduced from
considerations of horizontal equilibrium!

If we now express φ and dζ∗/dσ in terms of ∂ζ/∂ξ and ∂ζ/∂η, equations (3.22)–
(3.24) become

Hξ = −
∮

(Nξ cos Θ +Nξη sin Θ) dσ,

Hη = −
∮

(Nη sin Θ +Nξη cos Θ) dσ,

Tζ =
∮
{ξ(Nη sin Θ +Nξη cos Θ)− η(Nξ cos Θ +Nξη sin Θ)} dσ.


(3.33)

Further, because the horizontal forces N are in equilibrium throughout the free
surface region of the liquid, the contour integrals of equations (3.22)–(3.24) need not
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necessarily follow the curve C, but may include arbitrary regions of adjacent liquid
surface whose outer boundary would be chosen to simplify the evaluation of the
contour integrals.

(e ) Simplified expression for H between mirror-image objects
A simple application of the above feature is in the determination of H between two

mirror-image objects facing each other on an infinite expanse of liquid. If the objects
are symmetrically disposed about the η-axis, say, we extend the path of the contour
integral for Hξ to include the semi-infinite expanse where ξ is positive. Because ζ is
zero at infinity and, from symmetry, ∂ζ/∂ξ is zero along the η-axis it follows that

Hξ = 1
2

∫ ∞
−∞

{
ζ2

cl +
(

dζcl

dη

)2}
dη, (3.34)

where ζcl is the deflexion along the centre-line between the objects. Likewise, for an
infinite array of identical paired mirror-image objects at a pitch p,

Hξ = 1
2

∫ p

0

{
ζ2

cl +
(

dζcl

dη

)2}
dη. (3.35)

(f ) Overall equilibrium of arbitrary number of objects
For an arbitrary number of objects on an infinite expanse of liquid, integration

of equations (3.32)–(3.34) around a contour of infinite radius yields the following
equations of overall equilibrium:∑

Hξ =
∑
Hη =

∑
Tζ = 0, (3.36)

where the summations extend over each object.

(g ) The equilibrium state of strips that do not coalesce
In §4 we show that certain infinitely long strips do not coalesce but have an

equilibrium state where they are separated. If the strips are aligned parallel to the
η-axis, the load per unit length Nξ is zero in the region between such strips and
hence, from equation (3.28), the deflexion ζ satisfies the equation

ζ2 −
(

dζ
dξ

)2

= 0, (3.37)

whose solution is
ζ = Ce±ξ, (3.38)

where C is a constant. Of course, the deflexion ζ must also satisfy equation (2.16)
whose general solution is thus restricted to a single exponential variation. It follows
that if ζ∗1 , ζ∗2 are the deflexions of the facing edges of two strips that are in equilibrium,
the separation distance is such that

[λ]equilibrium =
∣∣∣∣ ln(ζ∗1ζ∗2

)∣∣∣∣. (3.39)

4. Phenomena associated with objects supported by surface tension

In order to demonstrate as simply as possible some of the phenomena associated
with objects supported primarily by surface tension, in our first application of the
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general equilibrium equations (3.19)–(3.21) we again discuss the one-dimensional
case of infinite cylindrical strips whose contact with the liquid is confined to their
flat lower surfaces but, unlike the strips of shallow rectangular section discussed in §2,
the centre of gravity may be at an arbitrary point in the cross-section. The specific
phenomena that we identify and analyse include: toppling instability, zero mutual
attraction, localized and extensive mutual repulsion, stable and unstable states near
a boundary, and characteristic deflexion patterns in rafts. We also consider infinite
strips with pie-crust edge undulations that, prior to coalescence, can result in a
phenomenon of mutual alignment, and a marked increase in the force of mutual
attraction after coalescence.

To enable us to derive the general equilibrium equations for a single strip under
arbitrary edge conditions we introduce additional orthogonal axes O′ξ′, O′ζ ′ that are
embedded in the strip cross-section, where O′ξ′ lies on the flat lower surface of the
strip whose edges are at ξ′ = ±β. The (ξ′, ζ ′) coordinates of the centre of gravity of
the strip are given by

ξ′cg,W = εβ, ζ ′cg,W = −τβ, (4.1)
so that ε is a measure of the eccentricity of the centre of gravity and, for example,
τ = h/b for strips of rectangular cross-section and uniform density. It follows that in
a tilted state,

ξcg,W = εβ − 1
2τ(ζ∗1 − ζ∗2 ). (4.2)

Referring now to the general equilibrium equations (3.19), (3.21), we note that per
unit length of strip:

W =
W

S
, V = β(ζ∗1 + ζ∗2 ), ξcg,V = −1

3β

(
ζ∗1 − ζ∗2
ζ∗1 + ζ∗2

)
, (4.3)

and hence the equations of vertical and moment equilibrium are

φ1 + φ2 + β(ζ∗1 + ζ∗2 ) = W/S,

β(φ1 − φ2) + (1 + 1
3β

2)(ζ∗1 − ζ∗2 ) = { 1
2τ(ζ∗1 − ζ∗2 )− εβ}W/S.

}
(4.4)

(a ) Equilibrium of a single strip with arbitrary centre of gravity
In regions remote from a single strip the deflexion of the liquid surface tends to

zero. Thus from equation (2.16) the deflexion of the liquid surface on either side of
the strip is given by

ζ1 = ζ∗1 e−ν1 , ζ2 = ζ∗2 e−ν2 , (4.5)
where ν1 and ν2 are measured normal to the edges of the strip. It follows that

φ1 = ζ∗1 , φ2 = ζ∗2 , (4.6)

and the equilibrium equations (4.4) may be solved to yield

ζ∗1 , ζ
∗
2 =

W

2S

(
1

1 + β
∓ εβ

1 + β + 1
3β

2 − 1
2τW/S

)
. (4.7)

(i) Requirements for the assumption of shallowness
From equation (4.7) we see that the assumption of shallowness made in §2 is valid

if
τ � 2S(1 + β + 1

3β
2)/W. (4.8)
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Now, from equations (2.25) and the discussion at the end of §2 d, the maximum value
of W for which linear theory is satisfactory is approximately

√
2S(1 + β) and hence,

even at this high value of W , the assumption of shallowness is valid if

τ � √2
(

1 +
β2

3(1 + β)

)
. (4.9)

(ii) Toppling instability of strip
From equation (4.7) it is seen that as ε→ 0 and

τW → 2S(1 + β + 1
3β

2), (4.10)

the expressions for ζ∗1 , ζ∗2 become indeterminate, which is indicative of a toppling
instability. Note that the term on the left of equation (4.10) equals the moment
caused by the displacement of the centre of gravity per angle of tilt, while the term
on the right equals the restoring moment due to surface tension and hydrostatic
pressure.

(iii) Strips with zero mutual attraction
Referring again to equation (4.7) and focusing attention on positive values of ε, it

follows that when

ε =
1
β

(
1 +

2β2 − 3τW/S
6(1 + β)

)
,

= ε∗, say, (4.11)

the deflexion ζ∗1 is zero, so that the surface of the liquid is undisturbed away from
the lighter side of the strip. Two such mirror-image strips with their lighter sides
facing each other therefore exhibit no force of mutual attraction. When ε > ε∗, the
deflexion ζ∗1 is negative and hence the lighter edge of the strip is tilted above the
remote level of the liquid.

(b ) Mutual attraction between two mirror-image strips
Here we determine the force of mutual attraction between two arbitrary mirror-

image strips and its dependence on β, ε, τ and λ, the (non-dimensional) distance
between them. Because of symmetry we can confine attention to the right-hand strip,
say, where from equation (2.16) the surface deflexion between the strips is given by

ζ1 = ζ∗1 cosh( 1
2λ− ν1) sech 1

2λ, (4.12)

where ν1 is measured from edge1, and the deflexion away from edge2 is given by

ζ2 = ζ∗2 e−ν2 . (4.13)

It follows that
φ1 = ζ∗1 tanh 1

2λ, φ2 = ζ∗2 , (4.14)
and equations (4.4), (4.14) enable us to determine ζ∗1 and ζ∗2 , while from equations
(3.22) or (3.34) the force of mutual attraction per unit length is given by

H = 1
2Sζ

∗2
1 sech2 1

2λ,

= 1
2Sζ

2
cl, (4.15)

where ζcl is the deflexion midway between the strips.
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Figure 8. Notation for two unequal strips.

For arbitrary values of ε, the force of mutual attraction is most conveniently ex-
pressed in terms of that when ε is zero. Thus we find

Hε=0 =
W 2

2S
e−λ
(

J

J(1 + β) + βGe−λ

)2

, (4.16)

where
J = 3(1 + β) +G,

G = β2 − 3
2τW/S.

For non-zero values of ε, H is given simply by

H = (1− ε/ε∗)2Hε=0, (4.17)

and we note that although H is zero if ε = ε∗, it is otherwise finite and positive.
Note, too, that if ε = −ε∗, so that the strips have their heavier sides facing each
other,

H = 4Hε=0. (4.18)

(c ) Localized mutual repulsion
The phenomenon of localized mutual repulsion is most simply displayed by con-

sideration of the equilibrium of two shallow strips of rectangular cross-section for
which ε is zero. However, unlike those considered in §2 f , the strips have different
weights W1, W2 and widths 2β1, 2β2, as shown in figure 8 where successive edges are
denoted by a, b, c, d, and (ν, ζ) coordinate systems whose origins are at a, b and d
are identified by the corresponding suffices.

The deflexions ζa, ζb and ζd are of the form

ζa = C1e−νa ,
ζb = C2e−νb + C3eνb ,
ζd = C4e−νd ,

 (4.19)

where the Cn are constants. It follows that

ζ∗a = C1, φa = C1,

ζ∗b = C2 + C3, φb = C2 − C3,

ζ∗c = C2e−λ + C3eλ, φc = −C2e−λ + C3eλ,
ζ∗d = C4, φd = C4.

 (4.20)

The constants Cn are to be determined from the equilibrium equations (4.4) for each
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strip, while the force of mutual attraction is given by equation (2.18). Hence we find

H =
UV e−λ(W1U −W2β

3
1e−λ)(W2V −W1β

3
2e−λ)

2S(1 + β1)(1 + β2)(UV − β3
1β

3
2e−2λ)2 , (4.21)

where

U = (1 + β2)(3 + 3β1 + β2
1),

V = (1 + β1)(3 + 3β2 + β2
2).

The symmetry of the terms in the expression for H is because H12 = H21. For
sufficiently large values of λ, equation (4.21) shows that

HS

W1W2
∼ e−λ

2(1 + β1)(1 + β2)
, (4.22)

which is essentially positive, indicating that there is then mutual attraction, but this
is not necessarily so everywhere.

(i) Conditions for mutual repulsion, H negative
An examination of equation (4.21) shows that a negative value for H can only

occur if one, and only one, of the factors in parentheses in the numerator is negative.
However, it may readily be shown that when either of these factors is negative, the
other is necessarily positive. Further, because equation (4.21) is unaltered by an
interchange of the suffices 1, 2, it is sufficient to confine attention to a negative first
factor, say. Mutual repulsion therefore occurs if

W2

1 + β2
>
W1eλ(3 + 3β1 + β2

1)
β3

1
. (4.23)

If this inequality holds for some value of λ, the position of stable equilibrium occurs
where H is zero, i.e. when the inequality becomes an equality, so that

[λ]equilibrium = ln
(

W2β
3
1

W1(1 + β2)(3 + 3β1 + β2
1)

)
. (4.24)

Note that [λ]equilibrium may also be determined without first deriving the expression
for H. This is because the analysis of §3 g indicates that the constant C2 is zero,
and hence the equilibrium equations (4.4) are sufficient to determine C1, C3, C4 and
[λ]equilibrium. See also equation (3.39).

The inequality (4.23) is quite general in that it determines if there is mutual
repulsion at a given value of λ. The tighter condition that two strips will or will not
coalesce depends on whether

W2/W1 < or > (1 + β2)(3 + 3β1 + β2
1)/β3

1 , (4.25)

i.e.
w2

w1
< or >

(
1 + β2

β2

)(
3 + 3β1 + β2

1

β2
1

)
, (4.26)

which shows at a glance that strips with the same weight per unit area will always
coalesce whatever their respective widths. It also shows that our earlier choice of a
negative first factor implies that we have defined strip2 as having the greater weight
per unit area.
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(ii) De-coupling of the strip deflexions
For strips that have coalesced, each of the deflexions ζ∗a , ζ∗b (= ζ∗c ), ζ∗d is a function

of β1, β2, W1 and W2. But for strips whose equilibrium state is one of separation,
with strip2 having the greater weight per unit area, the deflexions are de-coupled:

ζ∗a =
W1

2Sβ3
1

(
3− 3β1 + β2

1

)
,

ζ∗b =
W1

2Sβ3
1

(
3 + 3β1 + β2

1

)
,

ζ∗c = ζ∗d =
W2

2S

(
1

1 + β2

)
.


(4.27)

Furthermore, although strip1 is tilted, strip2 is horizontal with a deflexion identical
to that if strip1 was not present, see equation (2.25). The corresponding analysis for
the exact theory is given in Appendix B.

(iii) Discussion
If β1 or β2 are small, equation (4.26) shows that mutual repulsion can only oc-

cur if w2 � w1, but if β1 = β2 = 5, say, we find that mutual repulsion occurs if
w2/w1 > 2.07; for example, if we take w2/w1 = 3, equation (4.24) then shows that
[λ]equilibrium = 0.37, so that the range of mutual repulsion is quite small. Note, how-
ever, that because of the nature of equation (4.24) an e-fold increase, for example,
in the weight ratio W2/W1 would, in theory, increase [λ]equilibrium by a unit amount,
i.e. to 1.37. In practice, however, such high values of W2/W1 may not be adequately
treated by the present analysis because an increase in W2 increases its nonlinear
behaviour, while a reduction in W1 makes the assumption of its rigidity less tenable.

An understanding of why localized mutual repulsion can occur follows from a
consideration of the limiting case in which w1 → 0 and β1 → ∞. Because we have
assumed that this ‘strip’ is rigid, it simply acts as a device for maintaining the liquid
level under it. To the other strip, this acts as a boundary where the liquid level
is fixed. The deflexion of the strip in the immediate vicinity of this boundary will
necessarily result in components of hydrostatic pressure and surface tension, each of
which acts as a repulsion. Indeed, substitution of these limiting values into equation
(4.24) shows that [λ]equilibrium →∞, so that there is extensive mutual repulsion. To
investigate such effects in a more realistic context we next consider a strip near a
fixed boundary.

(d ) Equilibrium of strip near boundary
In what follows we determine the equilibrium state of a shallow, rigid strip of

weight per unit lengthW and width 2β which is at a distance λ from a fixed boundary
where either the surface deflexion ζB or the surface slope φB, as defined in (2.19), is
specified. For the analyses the notation of §4 c was adopted insofar as it relates to
the edges a, b of the strip, while the boundary takes the place of the edge c. First,
however, we introduce

ζhp =
W

2βS
=

w

γgL
, (4.28)

which is the (non-dimensional) surface deflexion due to hydrostatic pressure when
surface tension plays a negligible role, e.g. when β →∞.
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Figure 9. Variation of equilibrium gap with deflexion of liquid at boundary. Arrows indicate
direction of force applied to strip away from equilibrium state. β is the semi-width of strip; λ is
the distance from boundary.

(i) Specified surface deflexion at boundary
The constants C1, C2, C3 are readily determined from the equilibrium equations

(2.17) and hence from equation (2.18) we find

H

2S
=

β(1 + β + 1
3β

2)e−λE1E2

{(1 + β)(1 + β + 1
3β

2)− 1
3β

3e−2λ}2 , (4.29)

where

E1 = ζB(1 + β)− ζhpβe−λ,

E2 = ζhp(1 + β + 1
3β

2)− 1
3ζBβ

2e−λ.

Equation (4.29) shows that when ζB is zero or negative the term E1 is negative and
E2 is positive for all values of λ, so that there is extensive mutual repulsion. For
positive values of ζB the situation is more complex; thus, when

β

1 + β
<

ζB

ζhp
<

3 + 3β + β3

β2 , (4.30)

there is mutual attraction for all values of λ, so that [λ]equilibrium = 0. When ζB/ζhp
is below the range shown in (4.30) there is localized mutual repulsion and

[λ]equilibrium = ln
(

βζhp

(1 + β)ζB

)
. (4.31)

Likewise, when ζB/ζhp exceeds the range of (4.30) there is localized mutual repulsion
and

[λ]equilibrium = ln
(

β2ζB

(3 + 3β + β2)ζhp

)
. (4.32)

The variation of [λ]equilibrium with ζB/ζhp for various values of β is shown in figure 9.
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(ii) Specified surface slope at boundary
A similar analysis to that used in deriving equation (4.29) yields

H

2S
=

β(1 + β + 1
3β

2)e−λE′1E
′
2

{(1 + β)(1 + β + 1
3β

2) + 1
3β

3e−2λ}2 , (4.33)

where

E′1 = φB(1 + β) + ζhpβe−λ,

E′2 = ζhp(1 + β + 1
3β

2)− 1
3φBβ

2e−λ.

It follows that when
φB

ζhp
< −

(
β

1 + β

)
, (4.34)

there is mutual repulsion for all values of λ. When

−
(

β

1 + β

)
<
φB

ζhp
< 0, (4.35)

there is mutual attraction over the range 0 < λ < λ∗, where

λ∗ = ln
( −βζhp

(1 + β)φB

)
, (4.36)

and mutual repulsion where λ > λ∗. It follows that if λ = λ∗, the strip is in an
unstable equilibrium state; any deviation from this state results in the strip moving
to a stable equilibrium state where [λ]equilibrium = 0 or [λ]equilibrium →∞.

When

0 <
φB

ζhp
<

(
3 + 3β + β2

β2

)
, (4.37)

there is mutual attraction for all values of λ, so that [λ]equilibrium = 0, while if φB/ζhp
exceeds this range, there is localized repulsion and

[λ]equilibrium = ln
(

β2φB

(3 + 3β + β2)ζhp

)
. (4.38)

The variation of [λ]equilibrium with φB/ζhp for various values of β is shown in figure
10.

(e ) Extensive mutual repulsion between floating objects
The phenomenon of extensive mutual repulsion occurs only rarely between objects

supported by surface tension. In its extreme form in which there is, in theory, mutual
repulsion over the complete range 0 < λ < ∞, it is restricted to certain pairs of
infinitely long strips. For strips of finite length ls, say, the range of mutual repulsion,
namely 0 < λ < [λ]equilibrium, is also finite but, unlike the localized mutual repulsion
considered in §4 c, [λ]equilibrium is of the order of ls rather than L.

The phenomenon is most simply displayed by consideration of the equilibrium
of two identical, infinitely long strips with an eccentric centre of gravity ε, similar
to those considered in §4 b except that the heavier side of one strip now faces the
lighter side of the other. For sufficiently small values of ε there is mutual attraction
for all values of the gap λ, and in what follows we determine critical values of ε that
mark, first, the onset of localized mutual repulsion and, second, the onset of the
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Figure 10. Variation of equilibrium gap with slope of liquid at boundary. Arrows indicate direc-
tion of force applied to strip away from equilibrium state. β = semi-width of strip, λ = distance
from boundary, λ∗ refers to unstable equilibrium state.

extreme form of extensive mutual repulsion. We adopt the notation of §4 c so that
the deflexions and slopes may again be expressed by equations (4.19), (4.20). The
constants Cn are now determined from the equilibrium equations for each strip which
are given by equation (4.4) with the suffices 1,2 replaced by a, b and c, d. Hence we
find from equation (2.18) or (3.22),

H =
W 2

2S
e−λ
{(

J

J(1 + β) + βGe−λ

)2

−
(

3εβ(1 + β)
J(1 + β)− βGe−λ

)2}
, (4.39)

where G, J are as defined after equation (4.16). It follows that the force of mutual
attraction is progressively reduced as |ε| increases from zero. Indeed, when

|ε| = J{J(1 + β)− βG}
3β(1 + β){J(1 + β) + βG} , (4.40)

the force H is positive for non-zero values of λ but zero at λ = 0. Thus, although
the strips have coalesced there is then no force of mutual attraction between them.
For increased values of |ε| there is localized mutual repulsion similar to that in §4 c,
and the equilibrium state is given by

[λ]equilibrium = ln
(

βG{J + 3εβ(1 + β)}
J(1 + β){J − 3εβ(1 + β)}

)
. (4.41)

Likewise, if
|ε| > ε∗, (4.42)

where ε∗ is defined in equation (4.11), there is extensive mutual repulsion because
H is negative for all values of λ.

Finally, we note that although the variation of [λ]equilibrium with ε is continuous
from the onset of localized mutual repulsion to extensive mutual repulsion, the form
of equation (4.41) results in a nearly abrupt change in [λ]equilibrium as |ε| → ε∗, as
indicated in table 1 for the case in which β = 5 and τ → 0 so that ε∗ = 0.47̇.
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Table 1. Variation of equilibrium distance [λ]equilibrium with eccentricity of centre of gravity ε
for shallow strips in which β = 5

|ε| 0→ 0.166 0.2 0.3 0.4 0.47 0.477 0.47̇→ 1
[λ]equilibrium 0 0.167 0.751 1.70 4.08 6.39 ∞

(f ) Characteristic deflexion patterns in rafts
The characteristic deflexion patterns in rafts of strips held together by the effects of

surface tension are most simply displayed for rafts comprising identical, homogeneous
strips of shallow rectangular cross-section so that we may take τ and ε zero.

Consider therefore the equilibrium of two adjacent strips whose edges are at junc-
tions labelled (n − 1), n and (n + 1). We denote by φ+

n−1 and φ−n the values of φ
at the edges of the strip bounded by (n − 1), n. The corresponding values of φ for
the adjacent strip are accordingly φ+

n and φ−n+1 and, because of continuity of surface
tension between the two strips and the reversal of the outward normals ν, we have

φ−n = −φ+
n . (4.43)

Now the equilibrium equations (4.4), for the two strips are

φ+
n−1 + φ−n + β(ζn−1 + ζn) = W/S,

β(φ+
n−1 − φ−n ) + (1 + 1

3β
2)(ζn−1 − ζn) = 0,

}
(4.44)

and
φ+
n + φ−n+1 + β(ζn + ζn+1) = W/S,

β(φ+
n − φ−n+1) + (1 + 1

3β
2)(ζn − ζn+1) = 0.

}
(4.45)

Equations (4.43)–(4.45) enable us to eliminate the φ terms and derive the following
recurrence relation for the deflexions at successive junctions:

( 2
3 − β−2)ζn−1 + 2( 4

3 + β−2)ζn + ( 2
3 − β−2)ζn+1 = 4ζhp, (4.46)

where ζhp is defined by equation (4.28).
It may now be shown that the general solution of equation (4.46) is

ζn = ζhp + C1κ
n + C2κ

−n, (4.47)

where

κ =
3 + 4β2 + 2β{3(3 + β2)}1/2

3− 2β2 , (4.48)

and C1, C2 are constants to be determined from the boundary conditions.

(i) Boundary conditions
The deflexions ζn of the raft are symmetrical about its centre-line and when this

condition is satisfied it is sufficient to consider the boundary condition at one edge,
say the strip bounded by the junction (N − 1) and the free edge N . For this strip
the equilibrium equations (4.4) are

φ+
N−1 + φN + β(ζN−1 + ζN ) = W/S,

β(φ+
N−1 − φN ) + (1 + 1

3β
2)(ζN−1 − ζN ) = 0,

}
(4.49)
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from which φ+
N−1 may be eliminated. Now beyond the edge strip the deflexion is of

the form
ζ = ζNe−ν , (4.50)

so that
φN = ζN , (4.51)

and it follows that the boundary condition can be cast in the form

ζN (3 + 6β + 4β2)− ζN−1(3− 2β2) = 6β2ζhp. (4.52)

(ii) Forces of mutual attraction
Equations (4.44) enable us to express φ+

n−1 and φ−n in terms of the deflexions ζn−1
and ζn, and hence the horizontal force Hn−1,n required for the equilibrium of the
strip bounded by junctions (n − 1) and n may be expressed solely in terms of ζn−1
and ζn. Thus we find

Hn−1,n = S(ζn−1 − ζn){(1 + 1
3β

2)ζhp − 1
6β

2(ζn−1 + ζn)}. (4.53)

Now the force HN−1,N required for equilibrium of the end strip is necessarily applied
by the adjacent strip whose equilibrium requires that this force plus HN−2,N−1 must
be applied by the next strip, and so on. It follows that the horizontal compressive
force Fn, say, between strips at a typical junction n is given by

Fn =
N∑
n+1

Hk−1,k

= S(ζn − ζN ){(1 + 1
3β

2)ζhp − 1
6β

2(ζn + ζN )}. (4.54)

In particular, the force F0 at a central junction is given by

F0 = S(ζ0 − ζN ){(1 + 1
3β

2)ζhp − 1
6β

2(ζ0 + ζN )}. (4.55)

(iii) Raft with even number of strips
Here we consider a raft of 2N strips so that there are (2N − 1) junctions. If the

central junction is labelled 0, then from symmetry the junction deflexions ζn satisfy
the condition

ζn = ζ−n, (4.56)
so that we can write

ζn = ζhp +A(κn + κ−n), (4.57)
where the constant A is determined from the boundary condition (4.52). Hence we
find

ζn/ζhp = 1− κn + κ−n

{1 + (1 + 1
3β

2)1/2}κN + {1− (1 + 1
3β

2)1/2}κ−N , (4.58)

and the problem is formally solved.

(iv) Raft with odd number of strips
Consider now the case of (2N − 1) strips so that there are (2N − 2) junctions.

We label these from −(N − 2) to (N − 1) so that the central strip is bounded by
junctions 0 and 1. The deflexions ζn therefore satisfy the symmetry condition

ζ−n = ζn+1, (4.59)

Phil. Trans. R. Soc. Lond. A (1997)

 rsta.royalsocietypublishing.orgDownloaded from 

http://rsta.royalsocietypublishing.org/


898 E. H. Mansfield, H. R. Sepangi and E. A. Eastwood

and accordingly we can write

ζn = ζhp +B(κn + κ−n+1), (4.60)

where the constant B is determined from the boundary condition (4.52). Hence we
find

ζn/ζhp = 1− κn + κ−n+1

{1 + (1 + 1
3β

2)1/2}κN + {1− (1 + 1
3β

2)1/2}κ−N+1
. (4.61)

As is to be expected, equation (4.61) shows that the central strip in the raft is
not tilted, and comparison with equation (4.58) shows that the angles of tilt of the
other strips and their edge deflexions are intermediate between those of rafts with
‘adjacent’ even numbers of strips.

(v) Discussion
In discussing the above results for both even and odd numbers of strips it is

convenient to consider first the case in which β → (3/2)1/2, for then κ → ±∞ and
we have the simple result

ζN/ζhp = 3−√6 ≈ 0.5505, (4.62)

and
ζN−1 = ζN−2 = · · · = ζ0 = ζhp. (4.63)

Thus only the outermost strips are tilted and they alone provide the horizontal force
that holds the raft together whence, from equation (4.53):

H/S = 1
2ζ

2
hp, (4.64)

or, in dimensional terms,
H = W 2/12S. (4.65)

When β < (3/2)1/2, κ is positive and equations (4.58), (4.61) show that successive
values of ζn increase monotonically, but by decreasing amounts, towards the centre.
In contrast, when β > (3/2)1/2, κ is negative and successive values of ζn oscillate
about ζhp by decreasing amounts down to the central deflexion.

As for the horizontal force Hn−1,n, it may readily be shown that the term in
braces in equation (4.53) is necessarily positive and hence the direction of the force
is determined by the sign of (ζn−1 − ζn). If β < (3/2)1/2 it follows that Hn−1,n is
positive over the range 1 6 n 6 N and hence the compressive force Fn between strips
increases monotonically towards the centre. In contrast, if β > (3/2)1/2 successive
values of Hn−1,n alternate in sign and the resultant forces Fn oscillate by decreasing
amounts about F0 as n varies from (N−1) to 0. Examples of raft cross-sections with
4 strips with β = 0.4(3/2)1/2, (3/2)1/2 and 1.5(3/2)1/2 are shown in figure 11.

(g ) Influence of edge undulations on force of mutual attraction
Consider an infinitely long, rigid strip of width 2β and weight per unit length W ,

whose wetted lower surface is given by

ζ ′ = ∆c(ξ′/β)2 sinωcη′, −β 6 ξ′ 6 0,
= ∆d(ξ′/β)2 sin(ωdη′ + kd), 0 6 ξ′ 6 β,

}
(4.66)

where the primed coordinates are embedded in the strip, with ξ′, η′ in the plane
tangential to the wetted surface along the mid-line where ξ′ = 0. Such a strip has
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β = 0.4(3/2)1/2

β = 1.5(3/2)1/2

β = (3/2)1/2

Figure 11. Cross-section of infinitely long rafts comprising four strips of different widths.
Corresponding experimental results are given in figure 14.

wavy, pie-crust edges whose undulations may differ in magnitude, wavelength and
phase. In discussing its equilibrium equations we note first that the volume V, taken
over an infinite length, is independent of the magnitude of the undulations nor,
indeed, does this feature depend on the specified variation of ζ ′ with ξ′, which was
simply chosen for ease of visualization.

Consider now the edge at ξ′ = −β, identified by suffix c, where the surface deflexion
is given by

ζ∗c (η, λ) = ζ∗c (λ) + ∆c sinωcη, (4.67)
where ζ∗c (λ) is a rigid-body displacement and λ is the distance to the facing edge of
another strip where the surface deflexion is given by

ζ∗b (η, λ) = ζ∗b (λ) + ∆b sin(ωbη + kb), say. (4.68)

It follows from equation (2.15) that the surface deflexion at a distance νc from edgec
is given by

ζ(νc) = ζ∗c (λ)(cosh νc − cothλ sinh νc) + ζ∗b (λ){cosh(λ− νc)− cothλ sinh(λ− νc)}
+∆c sinωcη(cosh Ωcνc − coth Ωcλ sinh Ωcνc)

+∆b sin(ωbη + kb){cosh Ωb(λ− νc)− coth Ωbλ sinh Ωb(λ− νc)}, (4.69)

where
Ωi = (1 + ω2

i )
1/2, i = b, c. (4.70)

Now, along the edge at ξ′ = −β,

φc(η, λ) = −
(
∂ζ

∂νc

)
νc=0

,

= ζ∗c (λ) cothλ− ζ∗b (λ) cosechλ+ Ωc∆c sinωcη coth Ωcλ

−Ωb∆b sin(ωbη + kb) cosech Ωbλ, (4.71)
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and there are similar expressions for the edge at ξ′ = +β, if it faces another strip.
Now the equilibrium equations (3.19), (3.21) involve infinite integrals of φ(η, λ) and
ζ∗(η, λ) whose sinusoidal components necessarily vanish. It follows that in an equilib-
rium state the rigid-body deflexions ζ∗c (λ), ζ∗d(λ) are independent of the magnitude
of the undulations either of the strip itself or any adjacent strip; they are therefore
the same as for a flat strip. However, the forces of mutual attraction or repulsion are
influenced by edge waviness, and to investigate this in detail we first consider the
form taken by equations (3.22), (3.23) for the strip defined by equation (4.66).

(i) The forces of mutual attraction or repulsion
The values of φ2, etc., vary with η, and the forces of mutual attraction per unit

length are most readily given in terms of average values. Thus equations (3.22), (3.23)
become

〈Hξ/S〉 = 〈Qd〉 − 〈Qc〉, (4.72)
where

Qi = 1
2

[{
φi(η, λ)

}2

−
{
ζ∗i (η, λ)

}2

−
{
∂ζ∗i (η, λ)

∂η

}2]
, i = c, d

and
〈Hη/S〉 = 〈Q′d〉 − 〈Q′c〉, (4.73)

where

Q′i = −φi(η, λ)
∂ζ∗i (η, λ)

∂η
, i = c, d.

Let us suppose now that the edge at ξ′ = +β, faces an infinite expanse of liquid.
The surface deflexion at a distance νd from this edge is given by

ζ(νd) = ζ∗d(λ)e−νd + ∆d sin(ωdη + kd)e−Ωdνd , (4.74)

and substitution into equations (4.72), (4.73) yields

〈Qd〉 = 〈Q′d〉 = 0. (4.75)

Note that these results could also have been deduced immediately from the ar-
guments of §3 d if the contour paths of integration extend from the outer edges to
infinity. It follows that the force of mutual attraction between two such strips, de-
pends only on the boundary conditions at their facing edges. If these are given by
equations (4.67), (4.68), the surface deflexion between them is given by equation
(4.69), whence we find

〈Hξ/S〉 = 1
2ζ
∗
c (λ)ζ∗b (λ) sech2 1

2λ− 1
2{ζ∗c (λ)− ζ∗b (λ)}2 cosech2 λ

− 1
4(Ωc∆c cosech Ωcλ)2 − 1

4(Ωb∆b cosech Ωbλ)2

+ΩcΩb∆c∆b coth Ωcλ cosech Ωbλ〈sinωcη sin(ωbη + kb)〉, (4.76)

where ζ∗c (λ), ζ∗b (λ) are given by the methods of §4 b–e for flat strips. Note that unless
ωb = ωc, the last term in equation (4.76) is zero, whatever the value of kb. In what
follows we assume that ωb = ωc, noting that

〈sinωcη sin(ωcη + kb)〉 = 1
2 cos kb. (4.77)

Likewise, it may be shown that 〈Hη〉 is zero unless ωb = ωc, when

〈Hη/S〉 = −1
2ωcΩc∆c∆b sin kb cosech Ωcλ. (4.78)
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(ii) Strips with mirror-image symmetry
When kb = 0, ∆b = ∆c, ωb = ωc and ζ∗b (λ) = ζ∗c (λ), we find

〈Hξ/S〉 = 1
2{ζ∗c (λ) sech 1

2λ}2 + 1
4(Ωc∆c sech 1

2Ωcλ)2, (4.79)

so that the force of mutual attraction is increased by the presence of undulations.
Note that in terms of the surface deflexion ζcl along the midway line between the
strips, equation (4.79) can be expressed as

〈Hξ/S〉 = 1
2〈ζ2

cl + (dζcl/dη)2〉, (4.80)

in accord with the arguments of §3 e. The maximum value of 〈Hξ〉 occurs when the
strips have coalesced;

〈Hξ/S〉max = 1
2{ζ∗c (0)}2 + 1

4Ω2
c∆2

c . (4.81)

There are, however, limits to the values that Ωc and ∆c may take because of restric-
tions on the magnitude of the surface slopes and, for example, a possible requirement
that the wetted lower surface is below the remote surface level for all values of λ.
Nevertheless, for values of ζ∗c (0) < 0.2, say, edge undulations can more than double
the force of mutual attraction.

(iii) The phenomenon of mutual alignment
Consider again the case just considered, except that the mirror-image symmetry

is broken by the presence of a phase difference kb. The force of mutual attraction
can now be expressed in the form:

〈Hξ/S〉 = 1
2{ζ∗c (λ) sech 1

2λ}2 + 1
4Ω2

c∆2
c{sech2 1

2Ωcλ

−2 cosech2 Ωcλ cosh Ωcλ(1− cos kb)}, (4.82)

where it is seen that unless cos kb = 1, the above expression becomes negative and
unbounded as λ→ 0, indicating a high degree of repulsion. This singular behaviour
stems from a localized breakdown in linear theory which requires the surface slope
to become vertical as λ→ 0. In practice it means that if the phase difference kb does
not change, a state of equilibrium exists where λ is such that 〈Hξ/S〉 is zero, but this
equilibrium state requires the application of a force 〈Hη〉, given by equation (4.78).
If this equilibrating force is removed, it results in a relative shearing displacement
of the strips, leading to a reduction of the phase angle kb. It follows that the only
stable state for freely supported strips is that considered previously with kb = 0.
This phenomenon of mutual alignment is, of course, also applicable to finite objects,
and in the context of evolution this could have some biological advantage.

5. Upright circular cylinder with arbitrary centre of gravity

As a further example in the application of the equilibrium equations of §3, we
consider the equilibrium of an upright, circular cylinder with arbitrary centre of
gravity, the boundary of whose flat lower surface meets the surface of the liquid. The
cylinder has a radius ρ0 and weight W, whose centre of gravity is at

(ξ′cg,W , η
′
cg,W , ζ

′
cg,W) = (ερ0, 0, −τ). (5.1)

Note that although we focus attention on this particular shape, the analysis applies
to any object that has the same weight, the same centre of gravity, the same flat
lower surface and the same contact with the liquid.
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We search for a solution that satisfies equation (2.15) in the form

ζ = AK0(ρ) +BK1(ρ) cos θ, (5.2)

where K0 and K1 are modified Bessel functions and A, B are constants. Hence

φ = −
(
∂ζ

∂ρ

)
ρ0

= AK1(ρ0) +B{K0(ρ0) +K1(ρ0)/ρ0} cos θ, (5.3)

and the deflexion of the flat lower surface of the cylinder therefore lies in the tilted
plane

ζ = ζ0 + αξξ, (5.4)
where

ζ0 = AK0(ρ0), αξ = BK1(ρ0)/ρ0. (5.5)
Vertical equilibrium, see equation (3.19), now yields

A =
W

πρ0{ρ0K0(ρ0) + 2K1(ρ0)} . (5.6)

In discussing moment equilibrium it is convenient to introduce γC, the ratio of the
average density of the cylinder to that of the liquid, so that if τ is at the mid-height
of the cylinder,

γC =
W

2πρ2
0τ
. (5.7)

Substitution into equation (3.21) now yields

B =
εW

π[ρ0K0(ρ0) + {2(1− τ2γC) + 1
4ρ

2
0}K1(ρ0)]

. (5.8)

The constant B is proportional to the angle of tilt of the cylinder and it follows from
equation (5.8) that if

τ2γC � 1 +
ρ2

0

8
+
ρ0K0(ρ0)
2K1(ρ0)

, (5.9)

we can ignore the destabilizing effect caused by the centre of gravity being above the
plane of contact with the liquid, and the cylinder can be regarded as a shallow disc.

(a ) Tilting of the cylinder base above the remote liquid level
Here we determine the critical value of ε, ε∗ say, above which parts of the lighter

side of the cylinder base tilt above the remote level of the liquid. If we take ε∗ positive,
it is therefore determined by the vanishing of the edge deflexion at θ = −π, whence

AK0(ρ0) = BK1(ρ0), (5.10)

so that from equations (5.6) and (5.8),

ε∗ =
K0(ρ0)
ρ0K1(ρ0)

(
1 +

(ρ2
0 − 8τ2γC)K1(ρ0)

4{ρ0K0(ρ0) + 2K1(ρ0)}
)
. (5.11)

Note that although ε∗ is necessarily less than unity for circular cylinders there is
always a value of τ2γC which satisfies equation (5.11), whatever the value of ρ0. In
contrast, for shallow circular discs that satisfy the inequality (5.9), such situations
can only occur if ρ0 > 0.634.
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(b ) Toppling of a homogeneous, upright, circular cylinder
From equations (5.5), (5.8) we see that, in general, if ε is zero so too is the angle of

tilt αξ. But this is not always the case, because if the denominator in the expression
for B is zero, the expression for αξ becomes indeterminate. This is indicative of a
toppling instability which therefore occurs if

τ2γC = 1 +
ρ2

0

8
+
ρ0K0(ρ0)
2K1(ρ0)

. (5.12)

6. Arbitrarily shaped objects with planar lower surfaces

(a ) The equilibrium equations
Problems in which the surface of the liquid meets the boundary of the flat lower

surface of an object, such as those discussed in §4 a–f and §5, are the simplest to
analyse because the curve C is known, and V and other terms associated with the
effects of hydrostatic pressure are readily determinable because C∗ lies in a plane,

ζ = ζ0 + αξξ + αηη. (6.1)

The equilibrium equations (3.19)–(3.21) are further simplified by aligning the axes
so that the origin is at the centroid of the area A that is bounded by C, and Oξ, Oη
lie along the principal axes of A, so that∫

ξ dA =
∫
η dA =

∫
ξη dA = 0. (6.2)

Referring now to the various terms in equations (3.19)–(3.21) we find,

V =
∫
ζ dA,

= ζ0A. (6.3)

Likewise, ∮
ζ∗ sin Θ dσ = αηA,

∮
ζ∗ cos Θ dσ = αξA. (6.4)

To determine ηcg,V , for example, we solve for∫
(η − ηcg,V)ζ dA = 0, (6.5)

whence

ηcg,V =
αηIξ
ζ0A , (6.6)

where Iξ is the second moment of area about Oξ, and similarly

ξcg,V =
αξIη
ζ0A . (6.7)

Finally, we express ξcg,W , ηcg,W in terms of primed coordinates that are embedded
in the object, where O′ξ′, O′η′ are in the plane of the wetted surface and aligned so
that their vertical projections onto the horizontal plane coincide with Oξ, Oη. Hence
we find

ξcg,W = ξ′cg,W − αξζ ′cg,W , ηcg,W = η′cg,W − αηζ ′cg,W . (6.8)
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Figure 12. Notation for discs of oval shape.

Simplifications also arise in determining the forces of mutual attraction because
the contribution of the hydrostatic pressure can be derived directly and more simply
from the pressures applied over the area A. Thus we find∮

1
2ζ
∗2 cos Θ dσ = αξζ0A,

∮
1
2ζ
∗2 sin Θ dσ = αηζ0A. (6.9)

Likewise, ∮
1
2ρ
∗ζ∗

2
sin(θ −Θ) dσ = αξαη(Iξ − Iη). (6.10)

Finally, in the contribution of surface tension, we have

dζ∗

dσ
= αη cos Θ − αξ sin Θ . (6.11)

Simplified expressions for H between mirror-image objects are given in §3 e. For
circular discs similar arguments apply for other arrays including, in particular, the
stable clover-leaf array of three touching discs. Problems of this nature may be con-
sidered in a later paper but in what follows we present an inverse type of analysis that
yields a numerical solution for pairs of touching discs of oval shape, the boundaries
of whose flat lower surfaces meet the surface of the liquid.

(b ) Inverse method of analysis for touching pairs of oval discs
We assume that the pair of touching discs, whose shape is at present undetermined,

exhibit symmetry both about their common tangent at the point of contact and
about a horizontal line orthogonal to this tangent. With the notation of figure 12,
C is the point of contact and D,D′ are on each boundary diametrically opposite C;
the points O1, O2 are at the centres of the diameters CD,CD′, each of length 2χ.
We adopt polar coordinates ρ1, θ1 and ρ2, θ2 centred on O1 and O2 respectively but
we focus attention on the right-hand disc.

Guided by the results of §5 and to satisfy all the symmetry conditions, we take
the deflexion of the liquid surface to be given by

ζ = ζ1 + ζ2, (6.12)
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where

ζ1 = A{K0(ρ1) + µK1(ρ1) cos θ1},
ζ2 = A{K0(ρ2)− µK1(ρ2) cos θ2},

and A,µ are constants. Equation (6.12) may be expressed solely in terms of ρ1, θ1
coordinates via the relations

ρ2 = (4χ2 + 4χρ1 cos θ1 + ρ2
1)1/2, θ2 = arctan

(
ρ1 sin θ1

2χ+ ρ1 cos θ1

)
. (6.13)

Now C and D are in the right-hand disc which therefore lies in the tilted plane

ζd, say, = 1
2(ζC + ζD) + αξρ1 cos θ1, (6.14)

where

ζC = 2A{K0(χ)− µK1(χ)},
ζD = A[K0(χ) +K0(3χ) + µ{K1(χ)−K1(3χ)}],

and the angle of tilt is given by

αξ =
ζD − ζC

2χ
. (6.15)

It follows that the boundary of this disc for given values of χ and µ is at the inter-
section of this plane with the deflected liquid surface, i.e.

ζd = ζ, (6.16)

which may be determined numerically as θ1 varies incrementally from 0 to π. Such
discs can be made to satisfy the condition of vertical equilibrium by appropriate
choice of the constantA. But the condition of moment equilibrium specifies a value for
(ξ′cg,W−αξζ ′cg,W). It follows from equation (6.8) that each such solution is appropriate
to discs with a specified value of ξcg,W in the equilibrium state. The range of valid
solutions is, however, limited because ζ ′cg,W must be negative, while too large a value
of |ζ ′cg,W | results in a toppling instability as discussed in §5 b. Here we demonstrate
the method by treating the simple case of shallow discs of uniform density so that we
may take ζ ′cg,W and ξ′cg,W to be zero. Details of the numerical analysis are given in
Appendix C. For a given value of χ these first involve the determination by trial-and-
error of the constant µ to satisfy the condition of zero ξcg,W . The constant A is then
given by equation (3.19) and, from equation (3.34), the force of mutual attraction is
given by

Hξ = 4χA2
∫ 1

2π

0
[{K0(ρ) sec θ−µK1(ρ)}2+sin2 θ{K1(ρ) sec θ−µK2(ρ)}2] dθ, (6.17)

where
ρ = χ sec θ.

Some numerical results are shown in table 2.
The corresponding shapes of the oval discs are shown in figure 13. Note that these

equilibrium configurations are unstable because a small but opposing rotation (i.e.
rolling) of the discs introduces equal and opposite torques to each disc, stemming
initially from the now offset angle of the force Hξ. Such rotations increase until
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Table 2. Deflexion constants µ, A and force of mutual attraction Hξ between touching oval
discs of weight W

major diameter of oval, 2χ µ A Hξ

2 0.0564 0.1869W 0.0263W2

4 0.1207 0.2803W 0.0045W2

1

2

2

–2

–2

–4 –2 2 4

–1

Figure 13. Touching uniform discs of oval shape (major diameter = 2, 4).

a further configuration is reached where the torques are again zero, which occurs
approximately when the line of action of the force of mutual attraction, now Hξ,s
say, next passes through the centres of gravity — rather like the behaviour of an egg
on a horizontal surface. Detailed analysis of this is not attempted here but rough
estimates suggest that for both cases Hξ,s will exceed Hξ by about 20%. Further
families of touching discs may, of course, be analysed by taking additional terms in
the expressions for ζ1 and ζ2 including, for example, K0 functions whose origins are
symmetrically disposed about the common tangent at the point of contact.

7. Flexible discs

If there has been a coalescence of numerous objects whose linear dimensions are
small in comparison with L, the resulting patch may be analysed as a continuum of
infinitely many vanishingly small objects with the same overall weight per unit area.
Such patches have negligible out-of-surface rigidity and will be referred to as flexible
discs (or strips) to distinguish them from the rigid objects considered previously. The
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equations governing the surface deflexion are

ζ −∇2ζ = ζhp, under a flexible disc,
ζ −∇2ζ = 0, away from a disc,

}
(7.1)

where, as in §4,
ζhp = (weight per unit area)/(γgL).

If there is more than one flexible disc, the deflexion over the entire surface is the sum
of deflexions due to each disc, in contrast to the case of rigid discs where neighbouring
discs inhibit any curvature of the surface. It is this feature that is responsible for the
relative simplicity of this class of problem.

(a ) Equilibrium of single, flexible strip
The deflexion of a single, flexible strip of width 2β is readily found from equation

(7.1) by ensuring continuity of surface deflexion and slope at the edges. Thus, we
find

ζ = ζhp(1− e−β cosh ξ), −β 6 ξ 6 β,
ζ = ζ∗e−ν , |ξ| > β,

}
(7.2)

where
ζ∗ = 1

2ζhp(1− e−2β), (7.3)
and ν is the distance away from an edge. These results can also be derived by a
limiting process from equation (4.58) as N → ∞ for a raft comprising 2N rigid
strips each of width δ, so that

δ = β/N,

= ξ/n. (7.4)

Likewise, from equation (4.54), the compressive forces within a flexible strip are given
by

Fξ/S = ζ2
hpe−β(coshβ − cosh ξ), (7.5)

and we note that across the centre-line of the strip,

F0/S = 1
2ζ

2
hp(1− e−β)2. (7.6)

Note, finally, that equation (7.5) may also be derived by regarding the flexible strip
as supported on a frictionless but curved surface. The compressive forces Fξ are then
identified as those required to prevent elements of the strip from sliding towards its
centre-line, like the buffer forces between stationary railway trucks on a line across a
saucer-shaped depression. In the present scenario, an elemental strip of unit length
and width δξ has a weight equal to ζhpδξ and, because of the slope of the surface,
the element requires a horizontal force δFξ for equilibrium, where

δFξ
S

= ζhp
dζ
dξ
δξ. (7.7)

Now Fξ is zero at ξ = β, and hence integration of equation (7.7) yields

Fξ/S = ζhp(ζ − ζ∗), (7.8)

in accord with equations (7.2), (7.5).
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(b ) Mutual attraction between two, unequal, flexible strips
Consider two, unequal, flexible strips, identified by suffices a, b, that are separated

by a distance λ. The surface deflexion due solely to each strip is given by equations
(7.2), (7.3), with appropriate suffix and appropriate origin for the ξ coordinate. The
total deflexion of the surface is the sum of these components. Thus, focusing attention
on strip b, say, the resultant values of the surface deflexion and slope at the edge
facing strip a, identified by suffix 1, are given by

ζ∗b,1 = ζ∗b + e−λζ∗a , φb,1 = ζ∗b − e−λζ∗a . (7.9)

There is no need to determine the corresponding values at the outermost edge (suffix
2, say) because

ζ∗b,2 = φb,2, (7.10)
and these terms cancel each other in the expression for Hab. Thus, from equations
(2.18), (7.9),

Hab/S = 1
2ζhp,aζhp,b(1− e−2βa)(1− e−2βb)e−λ, (7.11)

the symmetry of this expression reflecting the fact that Hab = Hba.
It follows that for flexible strips there is always mutual attraction, in contrast to

the case of unequal rigid strips discussed in §4 c. Furthermore, for large values of λ
equations (4.22) and (7.11) give identical results as β1, β2 → 0, but for large values
of β1, β2,

Hrigid strips → 4Hflexible strips. (7.12)
Note, finally, that the force of mutual attraction within a single flexible strip, see
equation (7.5), can also be derived from equation (7.11) by regarding ξ as the junction
between two touching strips of unequal widths, i.e. by taking

ζhp,a = ζhp,b, βa = 1
2(β + ξ), βb = 1

2(β − ξ), λ = 0. (7.13)

(c ) Equilibrium of single, flexible, circular disc
When there is a single, flexible, circular disc of radius ρa and uniform weight per

unit area, we search for a solution of equations (7.1) in the form,

ζ = ζhp,a{1−AaI0(ρ)}, 0 6 ρ 6 ρa,
= ζhp,aBaK0(ρ), ρ > ρa,

}
(7.14)

where the modified Bessel functions I0(ρ), K0(ρ) satisfy conditions as ρ→ 0,∞, and
the constants Aa, Ba are chosen to ensure continuity of deflexion and slope at ρa.
Thus we find

Aa = K1(ρa)/Ga, Ba = I1(ρa)/Ga, (7.15)
where

Ga = K0(ρa)I1(ρa) +K1(ρa)I0(ρa).
In particular, the deflexion ζ∗a and radial slope φa at the boundary of the disc are
given by

ζ∗a = ζhp,aBaK0(ρa), φa = ζhp,aBaK1(ρa). (7.16)
The compressive forces within a flexible circular disc are most readily determined
by regarding the disc as supported on a frictionless but curved surface, as discussed
in §7 a. We assume that the continuum of vanishingly small objects that comprise a
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flexible circular disc has negligible resistance to shearing forces in its plane. It follows
that at every point the principal compressive forces are of equal magnitude, so that

Fρ = Fθ, (7.17)

where Fρ and Fθ are the radial and hoop compressions per unit length. These forces
are independent of θ but vary with ρ.

Consider now an element of the disc bounded by radii at θ and θ + δθ, and by
circular arcs of radii ρ, ρ+δρ. The area of this element is ρδρδθ and hence its weight is
ζhpρδρδθ. Because of the radial slope of the surface, this element requires a resultant
radial force to maintain its equilibrium. Thus, resolving in the radial direction yields,

{ρFρ − (ρ+ δρ)(Fρ + δFρ)− Fθδρ}δθ + ζhpρ
∂ζ

∂ρ
δρδθ = 0, (7.18)

whence, from equation (7.17), and dropping the suffices ρ and θ,
∂F

∂ρ
= ζhp

∂ζ

∂ρ
. (7.19)

Now F is zero at the boundary, so that

F = ζhp(ζ − ζ∗),
= ζ2

hp,aAa{I0(ρa)− I0(ρ)}. (7.20)

(d ) Mutual attraction between two, unequal, flexible, circular discs
If there are two, flexible, circular discs identified by suffices a, b, say, the resultant

deflexion of the surface is the sum of the deflexions due to a and b. Thus, if the
centres of the discs lie on the ξ-axis and we focus attention on disc a in determining
the force of mutual attraction, we need to know the changes in ζ∗a , φa and dζ∗a/dσ
caused by disc b. In this connection we note that a point (ρa, θa) on the boundary
of disc a corresponds to a point (ρba, θba), say, referred to an origin at the centre of
disc b, where

ρba = (χ2 + 2χρa cos θa + ρ2
a)

1/2, θba = arctan
(

ρa sin θa
χ+ ρa cos θa

)
, (7.21)

where
χ = ρa + ρb + λ,

and λ is the gap between the two discs. It follows that at a point (ρa, θa) on the
boundary of disc a, the deflexion caused by b is ζhp,bBbK0(ρba), and there is a surface
slope ζhp,bBbK1(ρba) directed at the angle θba, which can be resolved into components
that are normal and tangential to disc a. Thus if we introduce the following terms, f1 f2

f3 f4

f5 f6

 =

 ζhp,aBaK0(ρa) ζhp,bBbK0(ρba)
ζhp,aBaK1(ρa) ζhp,bBbK1(ρba)
f4 sin(θa − θba) f4 cos(θa − θba)

 , (7.22)

the resultant deflexions and slopes around the boundary of disc a are given by

ζ∗ = f1 + f2, φ = f3 + f6, dζ∗/dσ = f5, (7.23)

and, from equation (3.22), the force of mutual attraction is given by

H = ρa

∮
[ 1
2{(f3 + f6)2 − (f1 + f2)2 − f2

5 } cos θa + f5(f3 + f6) sin θa] dθa. (7.24)
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Table 3. Numerical values of H for unequal and equal discs

ρa ρb ζhp,a ζhp,b λ H

0.5 1 1 2 0.5 0.128087
1 0.5 2 1 0.5 0.128087

1 2 1 2 1 0.282045
2 1 2 1 1 0.282045

1 1 1 1 0.5 0.148290
1 1 1 1 1 0.080589

Table 3 shows some results of the numerical integration of equation (7.24) for a
set of values of ρa, ρb, ζhp,a, ζhp,b and λ, corresponding to Hab and with suffices a and
b interchanged, corresponding to Hba. A numerical check on the validity of equation
(7.24) is provided by the fact that Hab = Hba. Also shown in the last two rows are
the values for H obtained by the alternative use of equation (3.34) for equal discs,
which yields

H = 4ζ2
hpB

2
a(ρa + 1

2λ)
∫ 1

2π

0
[{K0(ρ) sec θ}2 + {K1(ρ) tan θ}2] dθ, (7.25)

where
ρ = (ρa + 1

2λ) sec θ.
The resulting values agree with those obtained from equation (7.24).

(i) Discussion
The single, circular, flexible disc is the only stable configuration for a coalescence of

numerous small, equal objects with negligible resistance to in-surface shearing forces.
The forces of mutual attraction between two such discs would generally alter the disc
shapes, and the process of coalescence would extend from an initial contact to the
single, stable, circular shape as discussed in §7 c. The analysis of §7 d is, however,
valid for discs with negligible out-of-surface rigidity provided there is adequate in-
surface rigidity.

8. Experimental results

The experiments described below were conducted on distilled water, approximately
35 mm deep, in a shallow tank (500 mm by 500 mm by 75 mm). The surface of the
water was maintained in a standard, clean state and the temperature was maintained
at 26 ◦C so that S = 0.07185 N m−1 and hence L = 2.706 mm. (It may be helpful to
note that 1 N m−1 ≈ 1.019 g(wt) cm−1.)

(a ) Force of mutual attraction
This experiment was to measure the force of mutual attraction between two touch-

ing brass strips of thickness 0.46 mm, width 10 mm and length 125 mm. Each strip
weighed 4.65 g which ensured that the water surface coincided with the upper edges
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of the strips, and hence the density of the strips, namely 8.09, had an effective value
of 7.09, as per §2 e. Ideally, one would like to determine the force required to separate
the strips by applying equal and opposite, uniformly distributed, horizontal, ‘open-
ing’ forces along the line of contact but this is not feasible without seriously affecting
the phenomenon under investigation. Fortunately, the strips are sufficiently rigid for
the total force of mutual attraction H, say, to be determined with some accuracy
from its equilibrium with equal and opposite ‘opening’ forces H∗, say, applied at a
single point along the line of contact. If this force system is applied at the mid-point
of the line of contact, then H = H∗, but the experiments are much easier to conduct
if this force system is applied at one end; then, by taking moments about the other
end, H = 2H∗.

The experimental apparatus consisted of two parts: a torsion balance modified to
measure the force applied to one strip, and a ‘force applicator’ that applied a force to
the other strip. The torsion balance had a full-scale deflexion of 500 mg(wt) marked
off in units of 1 mg. A coupling device converted horizontal forces experienced in
the plane of the water surface into vertical forces on the torsion balance. The ‘force
applicator’ consisted of a fine elastic thread lightly stretched between the outer ends
of two watch springs, one in the water, the other above the surface. Each strip had
a V-shaped notch, 1 mm wide by 1 mm deep, cut into one of its long edges, 1 mm
from one end. These notches were arranged to be in register, so that they formed
a hole which closed around the ‘force applicator’ and the tip of the torsion balance
coupling device. The combined elasticity of the elastic thread and the watch springs
made it possible to apply small force increments smoothly. A small force, insufficient
to cause separation, was then applied to the strips by using the torsion balance in
a conceptually reversed manner. Normally, the balance is subjected to an unknown
force (e.g. a weight to be measured) whose value is then read off the dial by zeroing
the balance with the dial arm. In this application a ‘prescribed’ force reading is set
up on the dial with the dial arm and the balance zeroed by subjecting it to a force
of that value. This is done by increasing the pull exerted by the ‘force applicator’. A
succession of increasing forces was now applied to the strips by the two-fold process of
setting the torsion balance to a selected dial reading and then adjusting the balance
indicator to zero by moving the ‘force applicator’. By gradually increasing the force
selected, a value was reached at which the strips finally separated before the balance
was zeroed. The force selected was thus higher than that actually required whereas
the previously chosen force was too low. A series of repeat experiments was then
conducted with increasingly smaller increments towards the end. The horizontal force
required to separate the two strips, namely H∗ = 391 mg, was thus determined by
an iterative process. The corresponding value of H is accordingly 782 mg, but to
compare this value with the theoretical prediction it is preferable to make allowance
for the fact that the experimental strips are of finite length so that there is some
support provided by surface tension at the ends. This can be done in an approximate
way as follows. We denote by φe a surface slope normal to the ends of a strip and
we assume that the deflexion ζe, say, along this normal decays as e−ν from its initial
value ζ∗e , say. It follows from arguments identical to that in §2 d and elsewhere that

φe = ζ∗e . (8.1)

Now ζ∗e varies linearly across the width from ζ∗1 to ζ∗2 and hence φe varies linearly
from φe,1 to φe,2 where

φe,1 = ζ∗1 and φe,2 = ζ∗2 . (8.2)
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If we introduce ls, the length of the strip, the equation of vertical equilibrium can
now be expressed as

lsS(φ1 + φ2) + 2bS(φe,1 + φe,2) + γgbls(z∗1 + z∗2) = lsW, (8.3)

which, after substitution of equation (8.2), can be expressed non-dimensionally in
the form

φ1 + φ2 + β(1 + δ)(ζ∗1 + ζ∗2 ) = W/S, (8.4)
where δ = 2L/ls. Likewise, the equation of moment equilibrium is given by

β(φ1 − φ2) + {1 + 1
3β

2(1 + δ)}(ζ∗1 − ζ∗2 ) = 0. (8.5)

For the case of two touching strips

φ1 = 0 and φ2 = ζ∗2 , (8.6)

and equations (2.18), (8.4) and (8.5) yield

H12/lsS = 1
2ζ
∗2
1 , (8.7)

where

ζ∗1 =
W

S

(
3 + 3β + β2(1 + δ)

3 + (6β + 4β2)(1 + δ) + 2β3(1 + δ)2

)
. (8.8)

The strips are such that β = 1.848 and δ = 0.0433. The effective weight W per
unit length of strip is 0.320 N m−1 and hence equations (8.7), (8.8) give

H12 = 7.21 mN,

= 737 mg(wt). (8.9)

Agreement with the experimentally determined value, namely 782 mg, is slightly
worse than this would indicate because equation (8.9) is based on linear theory,
whereas from figure 6, Hexact ≈ 1.15Hlinear. The experimentally determined value of
H thus underestimates the theoretical value by about 8%. This is not unexpected
because, although the strips are effectively rigid in the plane normal to their thick-
ness, they are susceptible to bending deformations out of this plane. Because the
strips are tilted, the horizontally applied load system to which they are subjected —
namely, the concentrated force H∗ which is equilibrated by the uniformly distributed
forces of mutual attraction — has a component normal to the surface of the strip.
This component has an ‘unzipping’ action on the two strips that can only result in
a lower measured value of H.

(b ) Strips with localized repulsion
For the experiments two metal strips, one of brass, the other of aluminium, were

made from rolled sheet material. The aluminium strip was milled to the same thick-
ness as that of the brass (0.45 mm) and then annealed to relieve the stress and re-
flatten it. The edges of both strips were milled to final size (280 mm long, 26.7 mm
wide) in order to ensure right-angled corners. The brass strip (28.2 g) was 3.2 times
heavier than the aluminium (8.8 g). The two strips were arranged side by side on a
wire frame and gently lowered onto the water surface. The edges of the aluminium
strip had been lightly rubbed against wax to ensure that they were hydrophobic
and, as a result — and in contrast to the brass strip — the water surface left the
aluminium strip along its lower edges. As soon as the strips were ‘floating’ freely,
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strip width 2.5 mm

strip width 6.5 mm

strip width 10 mm

Figure 14. Distinctive deflexion patterns in rafts with four strips whose widths correspond with
those in figure 11.

they moved to an equilibrium position 0.90 mm apart, either separating or coming
closer together depending on whether they were ‘launched’ touching one another or
separated by a distance in excess of 0.90 mm. To compare this value with the predic-
tion of linear theory we take account of the finite length of the strips by the adoption
of equations (8.4), (8.5). An analysis similar to that of §4 c then yields

H =
U ′V ′e−λ(W1U

′ −W2P1e−λ)(W2V
′ −W1P2e−λ)

2SQ(U ′V ′ − P1P2e−2λ)2 , (8.10)
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where

U ′ = {1 + β2(1 + δ)}{3 + 3β1 + β2
1(1 + δ)},

V ′ = {1 + β1(1 + δ)}{3 + 3β2 + β2
2(1 + δ)},

P1 = β1{β2
1(1 + δ)2 + 3δ},

P2 = β2{β2
2(1 + δ)2 + 3δ},

Q = {1 + β1(1 + δ)}{1 + β2(1 + δ)}.
Corresponding to equation (4.24) we now have

[λ]equilibrium = ln
(
W2P1

W1U ′

)
. (8.11)

Both strips are such that β = 4.933 and δ = 0.0193, while Waluminium = 0.3084 N m−1

and Wbrass = 0.8662 N m−1 with allowance for the water surface leaving at the upper
edges. It follows that equation (8.11) predicts a gap of 0.846 mm.

(c ) Deflexion patterns in 4-strip rafts
Three sets of four brass strips, all 125 mm long, were cut from 0.5 mm rolled sheet.

The four strips in each set were of the same width, namely 2.5 mm, 6.5 mm or 10 mm,
where 6.5 mm corresponds to β = (3/2)1/2. The strips were cleaned and polished with
Duraglit. The four strips of each set were then arranged side by side on a horizontal
wire frame and gently lowered onto the surface of the water in the middle of the tank
where they immediately assumed the distinctive deflexion patterns corresponding to
those in figure 11. In order to make these patterns more apparent, each raft was
moved under a low bridge on which was marked a millimetre scale with its numbers
in reversed ‘mirror writing’ which are reflected across the succession of raft strips as
shown in figure 14.

9. Conclusions

A theory is presented for determining the forces of mutual attraction — and, in
certain cases, mutual repulsion — between objects supported primarily by surface
tension. The key to this is the derivation of the equations of vertical equilibrium
and moment equilibrium about orthogonal, horizontal axes for an arbitrarily shaped
object at whose junction with the liquid and gas the free surface has arbitrary, but
small, deflexions and slopes; see equations (3.19)–(3.21). When applied to all the ob-
jects and to any surrounding boundary, these equilibrium equations, which must also
take into account the physical characteristics of the object, liquid and gas, provide
the necessary boundary conditions for determining the surface deflexion of the liq-
uid based on Laplace’s theory. The horizontal forces required to maintain the static
equilibrium of each object are now given by certain contour integrals involving the
squares of the surface deflexion and slopes along the contact line between object,
liquid and gas; see equations (3.22)–(3.24). In this connection we also present the
theory for the transfer of static, non-uniform, horizontal forces through a liquid; see
equations (3.28)–(3.30). This shows that the aforementioned contour integrals may
be extended to include arbitrary regions of adjacent free surface of the liquid, thus
opening up the possibility of a simpler evaluation. Thus, although the underlying
theory is linear, it enables the prediction of the non-linearities associated with the
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forces of mutual attraction or repulsion. For example, the force H of mutual attrac-
tion between mirror-image objects is proportional to (object weight)2. In general,
however, the variation of H with object weights is more complex because it depends
on the geometry and relative weight of each object. The variation of H with surface
tension S also depends on these features, but an increase in S generally causes a
decrease in H; indeed, for objects where the proportion of support from hydrostatic
pressure is negligible in comparison with that from surface tension,H varies inversely
as S. For large values of the gap λ between two objects of finite size, where λ is in
units of the capillary length L, the force H is proportional to the product of the
objects’ weights and decays asymptotically as λ−1/2e−λ; for infinite strips H decays
as e−λ. The theory can also predict the toppling instability of an object but it cannot
predict the precise conditions at which an object sinks, because the surface slopes
are then outside the range of linear theory; it can, however, predict a ‘safe’ weight
of an object that is known to be somewhat less than the critical weight.

Certain one-dimensional cases of infinitely long, cylindrical strips supported on an
infinite expanse of liquid have been considered because they admit of exact, large-
deflexion solutions. These indicate that the deflexion of an object will be adequately
given by linear theory even if the maximum slope of the adjacent liquid surface is as
high as 45◦, but for comparable accuracy in predicting the force of mutual attraction
or repulsion, the maximum slope should not exceed about 25◦. Other one-dimensional
cases have been analysed by linear theory because they also demonstrate in a simple
manner many of the phenomena associated with objects supported primarily by
surface tension. Localized mutual repulsion can occur between two strips that are
in close proximity if there are marked differences in their weights per unit area; its
range is of the order of L and the equilibrium state is at the limit of this range, where
H changes from repulsion to attraction. Mutual attraction or repulsion, which may
be localized or extensive, may occur if a strip is near a boundary where the surface
deflexion or slope is specified; indeed, for a range of specified slopes, there exists an
unstable position of equilibrium such that the strip will coalesce with the boundary
if displaced towards it, or move further away if displaced away from it.

Rafts of equal strips of shallow, rectangular section, held together by the effects of
surface tension, exhibit characteristic deflexion patterns. If the width of each strip
is 61/2L, the horizontal forces that hold the raft together are provided solely by the
edge strips that are tilted, while the central strips deflect an equal amount because
they are supported solely by hydrostatic pressure; for narrower strips, successive
deflexions of the junctions between strips increase monotonically towards the centre,
as do the compressive forces across junctions; for wider strips, successive junction
deflexions and compressive forces oscillate by decreasing amounts towards the centre.

We also determine the forces of mutual attraction or repulsion between two infinite
strips with pie-crust edge undulations that cause a repetitive two-dimensional pattern
of surface deflexion between the strips. Unless the undulations of the facing edges of
the strips are identical and in mirror-image alignment, the strips will not coalesce and
there is localized mutual repulsion. If the facing undulations are identical but not
necessarily in alignment, shearing forces due to surface tension effects will ensure
their alignment and so enable the strips to coalesce, at which point the force of
mutual attraction can be markedly greater than for strips without edge undulations.
The above results are unaffected by the presence or absence of undulations at the
outer edges.

As for objects of finite size, the simplest to analyse are those with a flat lower
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surface whose boundary meets the free surface of the liquid. Within this category we
determine the equilibrium state of an upright, circular cylinder with radially offset
centre of gravity, and the toppling instability of an upright, homogeneous, circular
cylinder. We also outline an inverse method of analysis for determining the force of
mutual attraction between touching pairs of discs, and the method is demonstrated
for discs of oval shape.

Finally we consider ‘flexible discs’ comprising coalescences of numerous objects
whose individual linear dimensions are small in comparison with L. The forces of
mutual attraction are determined within a circular, flexible disc, and between two
dissimilar, circular, flexible discs.

Experimental confirmation of some of these theoretical results is presented, includ-
ing the force of mutual attraction, an example of mutual repulsion and the distinctive
deflexion patterns exhibited by rafts of strips.

We hope the theory may find application in branches of the physical and biological
sciences.
When this paper was started, H.R.S. was at the Department of Materials Science and Engineer-
ing, University of Surrey.

Appendix A. Generalization of principle of Archimedes

If we apply Gauss’s theorem to the deflexion function ζ(ξ, η) for the case of a single
object supported on an infinite expanse of liquid, we have

−
∮

∂ζ

∂ν
dσ =

∫∫
∇2ζ dξ dη, (A 1)

where the area integration extends over the free surface of the liquid. It follows
from equations (2.15), (2.19) that the equation of vertical equilibrium can also be
expressed in the form ∫∫

ζ dξ dη + V =W. (A 2)

Thus Archimedes’ principle maintains its validity when surface tension effects are
present, because the sum of the terms on the left of equation (A 2) is the total
displaced liquid. Note that a more direct way of deriving equation (A 2) is to define
the ‘object’ as the actual object plus the vanishingly thin, free surface layer to which
purely horizontal forces are applied at infinity. The aforementioned sum of terms is
then identified as the total hydrostatic upthrust on the ‘object’. Furthermore, and
in contrast to equation (3.19), it is clear that equation (A 2) maintains its validity in
the exact, nonlinear regime.

Appendix B. Exact analysis for dissimilar strips

In what follows we adopt the notation of §4 c and figure 8. The surface deflexion
beyond the edges a and d are such that the arguments leading up to equation (2.21)
remain valid, as does the second of equation (2.23):

cosφi = 1− 1
2ζ
∗2
i , i = a, d. (B 1)

Now, from equation (2.13), the vanishing of H for each strip implies that equation
(B 1) is also valid for i = b, c. Indeed, this result stems from the vanishing of Nξ in
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an exact (one-dimensional) formulation of equation (3.28), namely

Nξ = 1
2ζ

2 + cos{arctan(∂ζ/∂ξ)} − 1. (B 2)

The vanishing of Nξ means that equation (B 2) is identical to equation (2.21) apart
from a change of sign in the radical because φb is negative. This may be integrated
to give,

ξ = (4− ζ2)1/2 − ln
(

2 + (4− ζ2)1/2

ζ

)
+ const. (B 3)

The equilibrium gap is now given in terms of the edge deflexions ζ∗b and ζ∗c , i.e.

[λ]equilibrium = ξ(ζ∗c )− ξ(ζ∗b ), (B 4)

where ζ∗b , ζ∗c are determined from the equilibrium equations (2.11) and (2.14) for
each strip, i.e.

sinφa + sinφb + β1(ζ∗a + ζ∗b ) cosα1 = W1/S,

sinα1(cosφa + cosφb) + cosα1(sinφa − sinφb) + 1
3β1(ζ∗a − ζ∗b ) = 0,

}
(B 5)

and

sinφc + sinφd + β2(ζ∗c + ζ∗d) cosα2 = W2/S,

sinα2(cosφc + cosφd) + cosα2(sinφc − sinφd) + 1
3β2(ζ∗c − ζ∗d) = 0.

}
(B 6)

The terms involving cosφi are given by equation (B 1), while those involving sinφi
are given by equation (2.23) with due allowance for the reversals in the direction of
ν, and with the assumption that strip2 is heavier than strip1, as in §4 c. Thus

sinφi = ζ∗i (1− 1
4ζ
∗2
i )1/2, i = a, c, d,

sinφb = −ζ∗b (1− 1
4ζ
∗2
b )1/2,

}
(B 7)

while from equation (2.12) the angles of tilt of the strips are given by

sinα1 =
(
ζ∗a − ζ∗b

2β1

)
, sinα2 =

(
ζ∗c − ζ∗d

2β2

)
. (B 8)

The deflexions ζ∗a , ζ∗b are determined by equation (B 5) while equation (B 6) shows
that the strip deflects according to equation (2.24) with ζ∗c = ζ∗d .

Appendix C. Numerical analysis for touching oval discs

Following the analysis of §6 c, attention is focused on the right hand disc, see
figures 12, 13, where ξ is measured from its centroid. Further, with simplification
in mind, and because we are dealing with a shallow disc, we denote the now equal
values of ξcg,W and ξ′cg,W by ξcg.

(i) Determination of µ
As a preliminary to the satisfaction of equation (3.21) with ξcg zero, we need to

determine the position of the centre of gravity of the disc relative to the origin O1.
Let ξ̄, η̄ be cartesian coordinates whose origin is at O1, then if the centre of gravity
is at ξ̄cg, we have

ξ = ξ̄ − ξ̄cg, (C 1)
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so that from equation (6.2),

ξ̄cg =
1
A
∫
ξ̄ dA. (C 2)

We now drop the suffix 1 and denote the polar coordinates of the right-hand disc
by ρ∗n, θn where n goes from zero to N and θn = nπ/N . In terms of the numerical
values of ρ∗n, noting that ρ∗0 = ρ∗N , we can therefore write

A ≈ π

N

N−1∑
n=0

ρ∗
2

n . (C 3)

Likewise we have∫
ξ̄ dA ≈ 2π

N

N−1∑
n=1

ρ∗
2

n cos θn sin θn

{
ρ∗n sin θn − N

2π
(ρ∗n+1 − ρ∗n−1) cos θn

}
. (C 4)

Equations (C 3) and (C 4) determine ξ̄cg from (C 2) and hence the ξ, η axes are defined
and we note that

ζ0 = 1
2{ζC + ζD + ξ̄cg(ζD − ζC)/χ}. (C 5)

Referring now to the various terms in equation (6.7), we have

Iη = Iη̄ − (ξ̄cg)2A, (C 6)

where Iη̄ is the second moment of area about the η̄ axis, whence

Iη̄ ≈ 2π
N

N−1∑
n=1

ρ∗
3

n cos2 θn sin θn

{
ρ∗n sin θn − N

2π
(ρ∗n+1 − ρ∗n−1) cos θn

}
. (C 7)

Also, when successive values of φ are determined we can write

∮
ξ∗φdσ ≈ π

N

[
φ0χ(χ− ξ̄cg) + 2

N−1∑
n=1

φnρ
∗ sec Ωn(ρ∗n cos θn − ξ̄cg)

]
, (C 8)

where Ω is the (clockwise) angle that an outward normal to the boundary makes
with a radial vector from O1, i.e.

Ω = arctan
(

1
ρ∗
∂ρ∗

∂θ

)
, so that Ωn ≈ arctan

{
N

2π

(
ρ∗n+1 − ρ∗n−1

ρ∗n

)}
. (C 9)

(ii) Determination of φ
The determination of φ is facilitated by the temporary re-introduction of suffices

1, 2 for the polar coordinates centred on O1 and O2. The radial and tangential
components of the slopes at the disc boundary due to the deflexions ζ1 and ζ2 are
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then given by,

Q1, say, =
(
∂ζ1

∂ρ1

)∗
= −A

[
K1(ρ∗1) + µ

{
K0(ρ∗1) +

1
ρ∗1
K1(ρ∗1)

}
cos θ1

]
,

Q2, say, =
1
ρ∗1

(
∂ζ1

∂θ1

)∗
= −A

[
µ

ρ∗1
K1(ρ∗1) sin θ1

]
,

Q3, say, =
(
∂ζ2

∂ρ2

)∗
= −A

[
K1(ρ∗2)− µ

{
K0(ρ∗2) +

1
ρ∗2
K1(ρ∗2)

}
cos θ2

]
,

Q4, say, =
1
ρ∗2

(
∂ζ2

∂θ2

)∗
= A

[
µ

ρ∗2
K1(ρ∗2) sin θ2

]
,


(C 10)

where ρ∗2 and θ∗2 may be expressed in terms of ρ∗1, θ
∗
1 via equation (6.13). Now, as

noted prior to equation (C 9), Ω is the (clockwise) angle that an outward normal to
the boundary makes with a radial vector from O1. The corresponding value Ω ′, say,
relative to the origin O2 is given simply by

Ω ′ = Ω + θ2 − θ1. (C 11)

It follows that(
∂ζ1

∂ν

)∗
= Q1 cos Ω −Q2 sin Ω ,

(
∂ζ2

∂ν

)∗
= Q3 cos Ω ′ −Q4 sin Ω ′, (C 12)

and hence

φ = −
(
∂ζ1

∂ν

)∗
−
(
∂ζ2

∂ν

)∗
. (C 13)

(iii) Determination of µ and A
We are now in a position to determine µ by trial-and-error for a given value of

χ because the terms on the left-hand side of equation (3.21) are now known. Note
that the value of µ is independent of the constant A which occurs there only as a
common factor. The constant A in equation (6.12) is now given by equation (3.19)
where we note that ∮

φ dσ ≈ π

N

[
φ0χ+ 2

N−1∑
n=1

φnρ
∗
n sec Ωn

]
. (C 14)

The values of µ and A given in table 2 were obtained by taking N = 100.
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